Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigations on spectroscopic parameters and molecular constants of SO+ (b4∑-) cation

Xing Wei Liu Hui Shi De-Heng Sun Jin-Feng Zhu Zun-Lüe

Citation:

Investigations on spectroscopic parameters and molecular constants of SO+ (b4∑-) cation

Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The potential energy curve (PEC) of b4Σ- electronic state of the SO+ cation is calculated using the internally contracted multireference configuration interaction approach with the Davidson modification (MRCI+Q) for internuclear separations from 0.103 to 1.083 nm. The basis set used is a correlation- consistent aug-cc-pV5Z basis set. The spin-orbit coupling effect on the spectroscopic parameters is taken into account by the state interaction approach with the full Breit-Pauli operator with all-electron basis set, aug-cc-pCVTZ. To improve the quality of PEC and spin-orbit coupling constant, core-valence correlation and relativistic corrections are included. Core-valence correlation correction is calculated using a cc-pCVTZ basis set. Relativistic corrections are included by the third-order Douglas-Kroll Hamiltonian approximation at the level of a cc-pV5Z basis set. At the MRCI+Q/aug-cc-pV5Z+CV+DK level, the spin-orbit coupling constant of the SO+ (b4Σ-1/2,3/2) is 1 cm-1 when the aug-cc-pCVTZ basis set is used for the spin-orbit coupling calculations The spectroscopic parameters are determined and compared with those reported in the literature. Excellent agreement is found between the present results and the measurements. The vibrational level G(v) inertial rotation constant Bv and centrifugal distortion constant Dv are predicted for each vibrational state of the b4Σ- electronic state by solving the ro-vibrational Schrödinger equation of nuclear motion using Numerov's method and those of the first 2 vibrational states are reported for the non-rotation SO+ cation. Comparison with the measurements demonstrates that the present vibrational manifolds are both reliable and accurate. They should be good predictions for future experimental or theoretical research.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10874064, 61077073), the Program for Science & Technology Innovation Talents in Universities of Henan Province in China (Grant No. 2008 HASTIT008), the Program for Science & Technology of Henan Province in China (Grant No. 122300410303), and the Natural Science Foundation of Educational Bureau of Henan Province in China (Grant No. 2011C140002).
    [1]

    Woods R C 1988 Philos. Trans. R. Soc. Lond. A 324 141

    [2]

    Turner B E 1992 Astrophys. J. 396 L107

    [3]

    Turner B E 1994 Astrophys. J. 430 727

    [4]

    Turner B E 1996 Astrophys. J. 468 694

    [5]

    Marconi M L, Mendis D A, Mitchell D L, Lin R P, Korth A, Réme H 1991 Astrophys. J. 378 756

    [6]

    Kivelson M G, Khurana K K, Walker R J, Warnecke J, Russell C T, Linker J A, Southwood D J, Polanskey C 1996 Science. 274 396

    [7]

    Russell C T, Kivelson M G 2000 Science. 287 1998

    [8]

    Blanco-Cano X, Russell C T, Strangeway R J, Kivelson M G, Khurana K K 2001 Adv. Space Res. 28 1469

    [9]

    Houria A B, Lakhdar Z B, Hochlaf M 2006 J. Chem. Phys. 124 054313

    [10]

    Dyke J M, Golob L, Jonathan N, Morris A, Okuda M, Smith D J 1974 J. Chem. Soc. Faraday Trans. 270 1818

    [11]

    Tsuji M, Yamagiwa C, Endoh M, Nishimura Y 1980 Chem. Phys. Lett. 73 407

    [12]

    Murakami I, Tsuji M, Nishimura Y 1982 Chem. Phys. Lett. 92 131

    [13]

    Cossart D, Lavendy H, Robbe J M 1983 J. Mol. Spectrosc. 99 369

    [14]

    Coxon J A, Foster S C 1984 Mol. Spectrosc. 103 281

    [15]

    Hardwick J L, Luo Y, Winicur D H, Coxon J A 1984 Can. J. Phys. 62 1792

    [16]

    Milkman I W, Choi J C, Hardwick J L, Moseley J T 1987 J. Chem. Phys. 86 1679

    [17]

    Milkman I W, Choi J C, Hardwick J L, Moseley J T 1988 J. Mol. Spectrosc. 130 20

    [18]

    Dujardin G, Leach S 1981 J. Chem. Phys. 75 2521

    [19]

    Cosby P C 1984 J. Chem. Phys. 81 1102

    [20]

    Reddy R R, Reddy A S R 1986 J. Quant. Spectrosc. Radiat. Transf. 35 167

    [21]

    Norwood K, Ng C Y 1989 Chem. Phys. Lett. 156 145

    [22]

    Amano T, Warner H E 1991 J. Mol. Spectrosc. 146 519

    [23]

    Dyke J M, Haggerston D, Morris A, Stranges S, West J B, Wright T G, Wright A E 1997 J. Chem. Phys. 106 821

    [24]

    Li S, Zheng R, Huang G M, Duan C X 2008 J. Mol. Spectrosc. 252 22

    [25]

    Lam C S, Wang H L, Xu Y T, Lau K C, Ng C Y 2011 J. Chem. Phys. 134 144304

    [26]

    Chen J X, Deng L H, Shao X P, Chen Y, Zhang J L, Wu L, Chen Y Q, Yang X H 2009 Chem. Phys. Lett. 477 45

    [27]

    Klotz R, Marian C M, Peyerimhoff S D 1983 Chem. Phys. 76 367

    [28]

    Balaban A T, De Maré G R, Poirier R A 1989 J. Mol. Struct. Theochem 183 103

    [29]

    Ornellas F R, Borin A C 1998 J. Chem. Phys. 109 2202

    [30]

    Qian Q, Yang C L, Gao F, Zhang X Y 2007 Acta Phys. Sin. 56 4420 (in Chinese) [钱琪, 杨传路, 高峰, 张晓燕 2007 56 4420]

    [31]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [32]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [33]

    Woon D E, Dunning T H 1995 J. Chem. Phys. 103 4572

    [34]

    Peterson K A, Dunning T H 2002 J. Chem. Phys. 117 10548

    [35]

    Shi D H, Li W T, Zhang X N, Sun J F, Liu Y F, Zhu Z L, Wang J M 2011 J. Mol. Spectrosc. 266 27

    [36]

    Shi D H, Liu H, Sun J F, Zhu Z L, Liu Y F 2011 J. Mol. Spectrosc. 269 143

    [37]

    Shi D H, Niu X H, Sun J F, Zhu Z L 2012 Acta Phys. Sin. 61 093105 (in Chinese) [施德恒, 牛相宏, 孙金锋, 朱遵略 2012 61 093105]

    [38]

    Liu K, Bian W S 2008 J. Comput. Chem. 29 256

    [39]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [40]

    Richartz A, Buenker R J, Peyerimhoff S D 1978 Chem. Phys. 28 305

    [41]

    Woon D E, Dunning T H 1993 J. Chem. Phys. 98 1358

    [42]

    Dunning T H 1989 J. Chem. Phys. 90 1007

    [43]

    Krogh J W, Lindh R, Malmqvist P Å, Roos B O, Veryazov V, Widmark P O 2009 User Manual, Molcas Version 7.4 (Lund: Lund University)

    [44]

    de Jong W A, Harrison R J, Dixon D A 2001 J. Chem. Phys. 11448

    [45]

    Chen H J, Cheng X L, Tang H Y, Wang Q W, Su X F 2010 Acta Phys. Sin. 59 4556 (in Chinese) [陈恒杰, 程新路, 唐海燕, 王全武, 苏欣纺 2010 59 4556]

    [46]

    Yan B, Liu L L, Wei C L, Guo J, Zhang Y J 2011 Chin. Phys. B 20 043101

    [47]

    Wang J M, Feng H Q, Sun J F, Shi D H 2012 Chin. Phys. B 21 023102

    [48]

    Wang J M, Sun J F, Shi D H, Zhu Z L, Li W T 2012 Acta Phys. Sin. 61 063104 (in Chinese) [王杰敏, 孙金锋, 施德恒, 朱遵略, 李文涛 2012 61 063104]

  • [1]

    Woods R C 1988 Philos. Trans. R. Soc. Lond. A 324 141

    [2]

    Turner B E 1992 Astrophys. J. 396 L107

    [3]

    Turner B E 1994 Astrophys. J. 430 727

    [4]

    Turner B E 1996 Astrophys. J. 468 694

    [5]

    Marconi M L, Mendis D A, Mitchell D L, Lin R P, Korth A, Réme H 1991 Astrophys. J. 378 756

    [6]

    Kivelson M G, Khurana K K, Walker R J, Warnecke J, Russell C T, Linker J A, Southwood D J, Polanskey C 1996 Science. 274 396

    [7]

    Russell C T, Kivelson M G 2000 Science. 287 1998

    [8]

    Blanco-Cano X, Russell C T, Strangeway R J, Kivelson M G, Khurana K K 2001 Adv. Space Res. 28 1469

    [9]

    Houria A B, Lakhdar Z B, Hochlaf M 2006 J. Chem. Phys. 124 054313

    [10]

    Dyke J M, Golob L, Jonathan N, Morris A, Okuda M, Smith D J 1974 J. Chem. Soc. Faraday Trans. 270 1818

    [11]

    Tsuji M, Yamagiwa C, Endoh M, Nishimura Y 1980 Chem. Phys. Lett. 73 407

    [12]

    Murakami I, Tsuji M, Nishimura Y 1982 Chem. Phys. Lett. 92 131

    [13]

    Cossart D, Lavendy H, Robbe J M 1983 J. Mol. Spectrosc. 99 369

    [14]

    Coxon J A, Foster S C 1984 Mol. Spectrosc. 103 281

    [15]

    Hardwick J L, Luo Y, Winicur D H, Coxon J A 1984 Can. J. Phys. 62 1792

    [16]

    Milkman I W, Choi J C, Hardwick J L, Moseley J T 1987 J. Chem. Phys. 86 1679

    [17]

    Milkman I W, Choi J C, Hardwick J L, Moseley J T 1988 J. Mol. Spectrosc. 130 20

    [18]

    Dujardin G, Leach S 1981 J. Chem. Phys. 75 2521

    [19]

    Cosby P C 1984 J. Chem. Phys. 81 1102

    [20]

    Reddy R R, Reddy A S R 1986 J. Quant. Spectrosc. Radiat. Transf. 35 167

    [21]

    Norwood K, Ng C Y 1989 Chem. Phys. Lett. 156 145

    [22]

    Amano T, Warner H E 1991 J. Mol. Spectrosc. 146 519

    [23]

    Dyke J M, Haggerston D, Morris A, Stranges S, West J B, Wright T G, Wright A E 1997 J. Chem. Phys. 106 821

    [24]

    Li S, Zheng R, Huang G M, Duan C X 2008 J. Mol. Spectrosc. 252 22

    [25]

    Lam C S, Wang H L, Xu Y T, Lau K C, Ng C Y 2011 J. Chem. Phys. 134 144304

    [26]

    Chen J X, Deng L H, Shao X P, Chen Y, Zhang J L, Wu L, Chen Y Q, Yang X H 2009 Chem. Phys. Lett. 477 45

    [27]

    Klotz R, Marian C M, Peyerimhoff S D 1983 Chem. Phys. 76 367

    [28]

    Balaban A T, De Maré G R, Poirier R A 1989 J. Mol. Struct. Theochem 183 103

    [29]

    Ornellas F R, Borin A C 1998 J. Chem. Phys. 109 2202

    [30]

    Qian Q, Yang C L, Gao F, Zhang X Y 2007 Acta Phys. Sin. 56 4420 (in Chinese) [钱琪, 杨传路, 高峰, 张晓燕 2007 56 4420]

    [31]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [32]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [33]

    Woon D E, Dunning T H 1995 J. Chem. Phys. 103 4572

    [34]

    Peterson K A, Dunning T H 2002 J. Chem. Phys. 117 10548

    [35]

    Shi D H, Li W T, Zhang X N, Sun J F, Liu Y F, Zhu Z L, Wang J M 2011 J. Mol. Spectrosc. 266 27

    [36]

    Shi D H, Liu H, Sun J F, Zhu Z L, Liu Y F 2011 J. Mol. Spectrosc. 269 143

    [37]

    Shi D H, Niu X H, Sun J F, Zhu Z L 2012 Acta Phys. Sin. 61 093105 (in Chinese) [施德恒, 牛相宏, 孙金锋, 朱遵略 2012 61 093105]

    [38]

    Liu K, Bian W S 2008 J. Comput. Chem. 29 256

    [39]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [40]

    Richartz A, Buenker R J, Peyerimhoff S D 1978 Chem. Phys. 28 305

    [41]

    Woon D E, Dunning T H 1993 J. Chem. Phys. 98 1358

    [42]

    Dunning T H 1989 J. Chem. Phys. 90 1007

    [43]

    Krogh J W, Lindh R, Malmqvist P Å, Roos B O, Veryazov V, Widmark P O 2009 User Manual, Molcas Version 7.4 (Lund: Lund University)

    [44]

    de Jong W A, Harrison R J, Dixon D A 2001 J. Chem. Phys. 11448

    [45]

    Chen H J, Cheng X L, Tang H Y, Wang Q W, Su X F 2010 Acta Phys. Sin. 59 4556 (in Chinese) [陈恒杰, 程新路, 唐海燕, 王全武, 苏欣纺 2010 59 4556]

    [46]

    Yan B, Liu L L, Wei C L, Guo J, Zhang Y J 2011 Chin. Phys. B 20 043101

    [47]

    Wang J M, Feng H Q, Sun J F, Shi D H 2012 Chin. Phys. B 21 023102

    [48]

    Wang J M, Sun J F, Shi D H, Zhu Z L, Li W T 2012 Acta Phys. Sin. 61 063104 (in Chinese) [王杰敏, 孙金锋, 施德恒, 朱遵略, 李文涛 2012 61 063104]

  • [1] Guo Rui, Tan Han, Yuan Qin-Yue, Zhang Qing, Wan Ming-Jie. Spectroscopic and transition properties of LiCl anion. Acta Physica Sinica, 2022, 71(4): 043101. doi: 10.7498/aps.71.20211688
    [2] Gao Feng, Zhang Hong, Zhang Chang-Zhe, Zhao Wen-Li, Meng Qing-Tian. Accurate theoretical study of potential energy curves, spectroscopic parameters, vibrational energy levels and spin-orbit coupling interaction on SiH+(X1Σ+) ion. Acta Physica Sinica, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [3] Spectroscopic and transition properties of LiCl- anion. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211688
    [4] Huang Duo-Hui, Wan Ming-Jie, Wang Fan-Hou, Yang Jun-Sheng, Cao Qi-Long, Wang Jin-Hua. Potential energy curves and spectroscopic properties of GeS molecules: in ground states and low-lying excited states. Acta Physica Sinica, 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [5] Wang Jie-Min, Wang Xi-Juan, Tao Ya-Ping. Spectroscopic parameters and molecular constants of 75As32S+ and 75As34S+. Acta Physica Sinica, 2015, 64(24): 243101. doi: 10.7498/aps.64.243101
    [6] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lü, Lü Shu-Xia. Theoretical study on spectroscopic properties and predissociation mechanisms of the electronic states of carbon monofluoride. Acta Physica Sinica, 2015, 64(15): 153101. doi: 10.7498/aps.64.153101
    [7] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. Spectroscopic properties of BCl (X1Σ+, a3Π, A1Π) molecule. Acta Physica Sinica, 2014, 63(12): 123102. doi: 10.7498/aps.63.123102
    [8] Huang Duo-Hui, Wang Fan-Hou, Yang Jun-Sheng, Wan Ming-Jie, Cao Qi-Long, Yang Ming-Chao. Potential energy curves and spectroscopic properties of SnO (X1Σ+, a3Π and A1Π) molecule. Acta Physica Sinica, 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [9] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lue. Spectroscopic properties of AlC (X4∑-, B4∑-) molecule. Acta Physica Sinica, 2013, 62(11): 113101. doi: 10.7498/aps.62.113101
    [10] Zhu Zun-Lüe, Lang Jian-Hua, Qiao Hao. Spectroscopic properties and molecular constants of the ground and excited states of SF molecule. Acta Physica Sinica, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [11] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. MRCI+Q study on spectroscopic parameters and molecular constants of X1Σ+ and A1Π electronic states of the SiSe molecule. Acta Physica Sinica, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [12] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun Lüe. Potential energy curve and spectroscopic properties of PS (X2Π) radical. Acta Physica Sinica, 2013, 62(20): 203104. doi: 10.7498/aps.62.203104
    [13] Shi De-Heng, Niu Xiang-Hong, Sun Jin-Feng, Zhu Zun-Lue. Spectroscopic parameters and molecular constants of X1+ and a3 electronic states of BF radical. Acta Physica Sinica, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [14] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lue. Study on spectroscopic properties of B2 (X3g-, A3u) molecule. Acta Physica Sinica, 2012, 61(20): 203101. doi: 10.7498/aps.61.203101
    [15] Wang Jie-Min, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lue, Li Wen-Tao. Theoretical investigation on molecular constants of PH, PD and PT molecules. Acta Physica Sinica, 2012, 61(6): 063104. doi: 10.7498/aps.61.063104
    [16] Wei Hong-Yuan, Xiong Xiao-Ling, Liu Guo-Ping, Luo Shun-Zhong. Spectroscopic parameters and potential energy function of the ground state of TiO (X 3 Δr). Acta Physica Sinica, 2011, 60(6): 063401. doi: 10.7498/aps.60.063401
    [17] Liu Hui, Xing Wei, Shi De-Heng, Zhu Zun-Lue, Sun Jin-Feng. Study on spectroscopic parameters and molecular constants of CS+(X2Σ+) and CS+(A2Π) by MRCI. Acta Physica Sinica, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [18] Wang Jie-Min, Sun Jin-Feng. Multireference configuration interaction study on spectroscopic parameters and molecular constants of AsN(X1 +) radical. Acta Physica Sinica, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [19] Sun Jin-Feng, Zhu Zun, Liu Hui, Shi De-Heng. Spectroscopic parameters and molecular constants of CSe(X1Σ+) radical. Acta Physica Sinica, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [20] Shi De-Heng, Zhang Jin-Ping, Sun Jin-Feng, Liu Yu-Fang, Zhu Zun-Lüe. Elastic collision between S and D atoms at low temperatures and accurate analytic interaction potential and molecular constants of the SD(X2Π) radical. Acta Physica Sinica, 2009, 58(11): 7646-7653. doi: 10.7498/aps.58.7646
Metrics
  • Abstract views:  7873
  • PDF Downloads:  366
  • Cited By: 0
Publishing process
  • Received Date:  28 April 2012
  • Accepted Date:  10 July 2012
  • Published Online:  05 December 2012

/

返回文章
返回
Baidu
map