搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非球形椭球粒子参数变化对光偏振特性的影响

张肃 彭杰 战俊彤 付强 段锦 姜会林

引用本文:
Citation:

非球形椭球粒子参数变化对光偏振特性的影响

张肃, 彭杰, 战俊彤, 付强, 段锦, 姜会林

Research of the influence of non-spherical ellipsoid particle parameter variation on polarization characteristic of light

Zhang Su, Peng Jie, Zhan Jun-Tong, Fu Qiang, Duan Jin, Jiang Hui-Lin
PDF
导出引用
  • 针对自然界中多数沙尘、烟煤粒子的非球形问题, 在球形粒子偏振特性的基础上, 进一步研究非球形椭球粒子的折射率、有效半径、粒子形状等参数变化对光偏振特性的影响, 采用基于T矩阵的非球形粒子仿真方法, 模拟非偏振光经椭球粒子传输后光的偏振特性及其与球形粒子间的差异, 并以实际沙尘、海洋、烟煤三种气溶胶粒子为例说明结果的正确性. 结果表明: 当折射率实部越小, 虚部越大时, 球形粒子与非球形粒子的偏振差异越不明显; 当粒子有效半径增加时, 球形粒子偏振度的变化比非球形粒子更为明显, 且最大值分别出现在散射角为150和120的位置; 当粒子形状不同时, 不同形状椭球及球形粒子的差异在散射角小于60 时并不明显, 且当椭球粒子纵横比互为倒数时, 两种粒子的偏振特性近似相同. 通过以上分析可知, 在光传输过程中, 椭球粒子多数情况下无法被近似为球形粒子进行计算.
    There are many non-spherical particles in the sand-dust and carbonaceous environment of the natural world, but this kind of particles are in most cases approximated by the spheres in the description of the transmission process, which cannot reflect the actual state of the transmission through the particles. For this reason, on the basis of polarization characteristic of spherical particles, a further research is made on the polarization characteristic with different refractive index, effective radius, particle shape, and other parameters of ellipsoid particles. When the non-polarized light is used as the incident light, the T-matrix method is applied to the simulation of the transmission process of the non-spherical particles, and the power-law size distribution is used to describe the size distribution condition of the particles, which is the most effective method to show the whole process of light scattering through non-spherical particles. With this method, the polarization characteristic after the transmission of the ellipsoid particles and the polarization differences between the ellipsoid and spherical particles can be obtained, and at the same time the examples of the sand-dust, marine and carbonaceous aerosols are given to show the validity of the results. Simulation results show that the smaller the real part of the refractive index and the larger the image nary part of the refractive index, the less obvious the polarization character differences between the ellipsoid and spherical particles are. When the effective radius of particle increases, the DOP (degree of polarization) variation of the spherical particles is more obvious than the non-spherical particles, and the maximum values are at the positions of the scattering angles 150 and 120 respectively. When the particle shape is different, the differences between the ellipsoid at diverse vertical-to-horizontal ratio and spherical particles are not obvious if the scattering angle is less than 60, and when the vertical-to-horizontal ratio of the ellipsoid particle is reciprocal, the polarization character of the two kinds of particles becomes the same. Through the analysis above, in the process of transmission, in most circumstances the ellipsoid particles cannot be approximated by spherical particles for computation, and the parameters of the refractive index, effective radius, shape of the ellipsoid particles can all influence the polarization character.
      通信作者: 张肃, susiezhang21@126.com
    • 基金项目: 国家重点基础研究发展计划和国家高技术发展研究计划资助的课题.
      Corresponding author: Zhang Su, susiezhang21@126.com
    • Funds: Project supported by the National Basic Research Program of China and the National High Technology Research and Development Program of China.
    [1]

    Wu L H, Zhang J, Fan Z G, Gao J 2014 Acta Phys. Sin. 63 114201 (in Chinese) [吴良海, 张骏, 范之国, 高隽 2014 63 114201]

    [2]

    Sun X M, Wang H H, Liu W Q, Shen J 2009 Chin. Phys. B 18 1040

    [3]

    Ramella-Roman J C, Prahl S A, Jacques S L 2005 Opt. Express 13 4420

    [4]

    Hohner D, Wirtz S, Kruggel-Emden H, Scherer V 2011 Powder Technol. 208 643

    [5]

    Min Q L, Duan M Z 2004 J. Quant. Spectrosc. Radiat. Transfer 87 243

    [6]

    Prahl S A, van Gemert M J C, Welch A J 1993 Applied Optics 32 559

    [7]

    Zhu C G, Liu Q 2013 J. Biomed. Opt. 18 050902

    [8]

    Zhang Q Q, Gao J, Xu X H, Xie Z 2012 Chin. J. Laser 39 1213001 (in Chinese) [张倩倩, 高隽, 徐小红, 谢昭 2012 中国激光 39 1213001]

    [9]

    Cai J, Gao J, Fan Z G, Feng S, Fang J 2013 Chin. J. Lumin. 34 639 (in Chinese) [蔡嘉, 高隽, 范之国, 冯屾, 方静 2013 发光学报 34 639]

    [10]

    Hill S C, Hill A C, Barber P W 1984 Appl. Opt. 23 1025

    [11]

    Sun X M, Wang H H, Shen J, Wang S J 2011 Acta Phys. Sin. 60 114216 (in Chinese) [孙贤明, 王海华, 申晋, 王淑君 2011 60 114216]

    [12]

    Cao Y Y, Stilgoe A B, Chen L, Nieminen T A, Rubinsztein-Dunlop H 2012 Opt. Express 20 12987

    [13]

    Karpisz T, Salski B, Szumska A, Klimczak M, Buczynski R, 2015 Opt. Quant. Electron. 47 99

    [14]

    Yin Z H 2014 Appl. Mech. Mater. 556-562 3642

    [15]

    Michael Kahnert F 2002 J. Quant. Spectrosc. Radiat. Transfer 79-80 775

    [16]

    Draine B T, Flatau P J 1994 J. Opt. Soc. Am. A 11 1491

    [17]

    Wei P Y, Sun X M, Wang H H, Lei C X 2013 J. Light Scatt. 25 121 (in Chinese) [魏佩瑜, 孙贤明, 王海华, 类成新 2013 光散射学报 25 121]

    [18]

    Bi L, Yang P 2014 J. Quant. Spectrosc. Radiat. Transfer 138 17

    [19]

    Spurr R, Wang J, Zeng J, Mishchenko M I 2012 J. Quant. Spectrosc. Radiat. Transfer 113 425

    [20]

    Mishchenko M I, Travis L D, Lacis A A 2004 Scattering, Absorption, and Emission of Light by Small Particles (Volume 1) (New York: NASA Goddard Institute for Space Studies) p160

    [21]

    Siewert C E 1981 Astrophys. J. 245 1080

    [22]

    Mishchenkoa M I, Travisa L D 1998 J. Quant. Spectrosc. Radiant. Transfer 60 309

    [23]

    Mishchenko M I, Travis L D 1994 J.Quant. Spectrosc. Radiat. Transfer 51 759

  • [1]

    Wu L H, Zhang J, Fan Z G, Gao J 2014 Acta Phys. Sin. 63 114201 (in Chinese) [吴良海, 张骏, 范之国, 高隽 2014 63 114201]

    [2]

    Sun X M, Wang H H, Liu W Q, Shen J 2009 Chin. Phys. B 18 1040

    [3]

    Ramella-Roman J C, Prahl S A, Jacques S L 2005 Opt. Express 13 4420

    [4]

    Hohner D, Wirtz S, Kruggel-Emden H, Scherer V 2011 Powder Technol. 208 643

    [5]

    Min Q L, Duan M Z 2004 J. Quant. Spectrosc. Radiat. Transfer 87 243

    [6]

    Prahl S A, van Gemert M J C, Welch A J 1993 Applied Optics 32 559

    [7]

    Zhu C G, Liu Q 2013 J. Biomed. Opt. 18 050902

    [8]

    Zhang Q Q, Gao J, Xu X H, Xie Z 2012 Chin. J. Laser 39 1213001 (in Chinese) [张倩倩, 高隽, 徐小红, 谢昭 2012 中国激光 39 1213001]

    [9]

    Cai J, Gao J, Fan Z G, Feng S, Fang J 2013 Chin. J. Lumin. 34 639 (in Chinese) [蔡嘉, 高隽, 范之国, 冯屾, 方静 2013 发光学报 34 639]

    [10]

    Hill S C, Hill A C, Barber P W 1984 Appl. Opt. 23 1025

    [11]

    Sun X M, Wang H H, Shen J, Wang S J 2011 Acta Phys. Sin. 60 114216 (in Chinese) [孙贤明, 王海华, 申晋, 王淑君 2011 60 114216]

    [12]

    Cao Y Y, Stilgoe A B, Chen L, Nieminen T A, Rubinsztein-Dunlop H 2012 Opt. Express 20 12987

    [13]

    Karpisz T, Salski B, Szumska A, Klimczak M, Buczynski R, 2015 Opt. Quant. Electron. 47 99

    [14]

    Yin Z H 2014 Appl. Mech. Mater. 556-562 3642

    [15]

    Michael Kahnert F 2002 J. Quant. Spectrosc. Radiat. Transfer 79-80 775

    [16]

    Draine B T, Flatau P J 1994 J. Opt. Soc. Am. A 11 1491

    [17]

    Wei P Y, Sun X M, Wang H H, Lei C X 2013 J. Light Scatt. 25 121 (in Chinese) [魏佩瑜, 孙贤明, 王海华, 类成新 2013 光散射学报 25 121]

    [18]

    Bi L, Yang P 2014 J. Quant. Spectrosc. Radiat. Transfer 138 17

    [19]

    Spurr R, Wang J, Zeng J, Mishchenko M I 2012 J. Quant. Spectrosc. Radiat. Transfer 113 425

    [20]

    Mishchenko M I, Travis L D, Lacis A A 2004 Scattering, Absorption, and Emission of Light by Small Particles (Volume 1) (New York: NASA Goddard Institute for Space Studies) p160

    [21]

    Siewert C E 1981 Astrophys. J. 245 1080

    [22]

    Mishchenkoa M I, Travisa L D 1998 J. Quant. Spectrosc. Radiant. Transfer 60 309

    [23]

    Mishchenko M I, Travis L D 1994 J.Quant. Spectrosc. Radiat. Transfer 51 759

  • [1] 蔡玉栋, 韩平丽, 刘飞, 闫明宇, 邵晓鹏. 基于光场偏振特性的目标表面漫反射分量获取技术.  , 2020, 69(23): 234201. doi: 10.7498/aps.69.20201064
    [2] 胡帅, 高太长, 刘磊, 易红亮, 贲勋. 偏振光在非球形气溶胶中传输特性的Monte Carlo仿真.  , 2015, 64(9): 094201. doi: 10.7498/aps.64.094201
    [3] 张学海, 魏合理, 戴聪明, 曹亚楠, 李学彬. 取向比对椭球气溶胶粒子散射特性的影响.  , 2015, 64(22): 224205. doi: 10.7498/aps.64.224205
    [4] 崔帅, 张晓娟, 方广有. 基于递归T矩阵的离散随机散射体散射特性研究.  , 2014, 63(15): 154202. doi: 10.7498/aps.63.154202
    [5] 李泽龙, 钟哲强, 张彬. 基于互补型偏振控制板的多光束叠加特性研究.  , 2014, 63(9): 095204. doi: 10.7498/aps.63.095204
    [6] 邵纬航, 陈伟中. 非球形包膜微泡近场局部高压研究.  , 2014, 63(20): 204702. doi: 10.7498/aps.63.204702
    [7] 孙悟, 邓小玖, 李耀东, 张永明, 郑赛晶, 王维妙. 双波长抗干扰光电感烟探测机理.  , 2013, 62(3): 030201. doi: 10.7498/aps.62.030201
    [8] 米利, 周宏伟, 孙祉伟, 刘丽霞, 徐升华. 光散射聚集速率测定中T矩阵方法的应用.  , 2013, 62(13): 134704. doi: 10.7498/aps.62.134704
    [9] 欧军, 江月松, 邵宇伟, 屈晓声, 华厚强, 闻东海. 均匀椭球粒子对拉盖尔-高斯光束的散射特性研究.  , 2013, 62(11): 114201. doi: 10.7498/aps.62.114201
    [10] 曾伦武, 张浩, 唐中良, 宋润霞. 拓扑绝缘体椭球粒子的电磁散射.  , 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
    [11] 陈萍, 唐志列, 王娟, 付晓娣, 陈飞虎. 用Stokes参量法实现数字同轴偏振全息的研究.  , 2012, 61(10): 104202. doi: 10.7498/aps.61.104202
    [12] 范萌, 陈良富, 李莘莘, 陶金花, 苏林, 邹铭敏, 张莹, 韩冬. 非球形气溶胶粒子短波红外散射特性研究.  , 2012, 61(20): 204202. doi: 10.7498/aps.61.204202
    [13] 孙贤明, 王海华, 申晋, 王淑君. 随机取向双层椭球粒子偏振散射特性研究.  , 2011, 60(11): 114216. doi: 10.7498/aps.60.114216
    [14] 戴兵, 罗向东, 王亚伟. 椭圆截面非球形颗粒群的多重光散射.  , 2009, 58(6): 3864-3869. doi: 10.7498/aps.58.3864
    [15] 孙贤明, 申晋, 魏佩瑜. 含有密集随机分布内核的椭球粒子光散射特性研究.  , 2009, 58(9): 6222-6226. doi: 10.7498/aps.58.6222
    [16] 付文羽, 马书懿. 部分相干平顶光束经光阑衍射的偏振特性.  , 2008, 57(2): 1271-1277. doi: 10.7498/aps.57.1271
    [17] 刘廷禹, 张启仁, 庄松林. 钨酸铅晶体中与铅空位有关的电子结构和色心模型研究.  , 2006, 55(6): 2914-2921. doi: 10.7498/aps.55.2914
    [18] 常梅, 金亚秋. 随机非球形粒子全极化散射的时间相关Mueller矩阵解.  , 2002, 51(1): 74-83. doi: 10.7498/aps.51.74
    [19] 赵立竹, 申猛燕, 後藤武生. 气相法生长N-salicylideneaniline单晶及其偏振特性.  , 2001, 50(8): 1540-1544. doi: 10.7498/aps.50.1540
    [20] 韩一平, 吴振森. 椭球粒子电磁散射的边界条件的讨论.  , 2000, 49(1): 57-60. doi: 10.7498/aps.49.57
计量
  • 文章访问数:  6486
  • PDF下载量:  227
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-23
  • 修回日期:  2015-12-01
  • 刊出日期:  2016-03-05

/

返回文章
返回
Baidu
map