-
为了研究激光在实际加工表面的散射特性,利用分辨率为10 nW的激光功率计PM100D,波长为1550 nm的激光器和精密转台,自行设计并搭建了半球空间中目标表面散射特性的测量系统. 以典型的刨床加工的若干标准粗糙度比较样块为被测目标,在1550 nm红外激光以不同方位照射下,测量了微观具有V形槽结构的不同粗糙度的样块表面的散射功率分布. 实验结果转换成双向反射分布函数后,对比分析了入射光方位、入射角和表面粗糙度对此类典型表面散射特性的影响,并分析了特殊散射场形成的原因. 结果表明,表面纹理、入射角以及粗糙度均对目标表面的散射特性有规律性影响,这一结果对于具有规律性加工纹理表面的散射特性的研究和建模有一定的参考价值,对激光技术在实际加工表面的应用研究提供了一定的基础.In order to study the scattering characteristics of practical machining surfaces under the infrared laser irradiation, an experiment device is designed to measure the semispherical scattering characteristics of machining surfaces. The measuring system consists of a laser power meter with a resolution of 10 nW, a laser device of 1550 nm wavelength, and two precisely rotating platforms. The distributions of scattering power from the specimen surfaces with micro V-groove structures and different surface roughness values are measured under the irradiation of 1550 nm infrared laser. After the measured results are converted into the bidirectional reflectance distributional function, the effects of incident azimuthal angle, incident angle, and surface roughness on the scattering characteristics of surface of such a kind are comparatively analyzed, and the cause for the formation of special scattering field is also analyzed. The experimental results indicate that the surface texture, incident angle and surface roughness all affect the scattering property in a regular manner. The results contribute to the study of surface scattering characteristics and the application of laser technology to surfaces with V-groove structures.
-
Keywords:
- scattering characteristics /
- bidirectional reflectance distributional function /
- infrared laser /
- machining surfaces
[1] Boschker J E, Tybell T 2012 Appl. Phys. Lett. 100 151604
[2] Frankot R T, Chellappa R 1988 TPAMI 10 439
[3] Fleming R W, Torralba A, Adelson E H 2004 J. Vision. 4 798
[4] Guo L X, Wang Y H, Wu Z S 2005 Acta Phys. Sin. 54 96 (in Chinese) [郭立新, 王运华, 吴振森 2005 54 96]
[5] Zhang L H, Yang Y, Zang H G, Hu S J, Chen W B, Lu Y T 2008 Chinese J. Lasers 35 1001 (in Chinese) [张雷洪, 杨艳, 臧华国, 胡善江, 陈卫标, 陆雨田 2008 中国激光 35 1001]
[6] Ishimaru A 1991 Proc. IEEE 79 1359
[7] Kuo C H, Moghaddam M 2006 IEEE Antenn. Propag. M 54 2917
[8] Johnson J T 2002 IEEE Antenn. Propag. M 50 1361
[9] Li J, Guo L X, Zeng H, Han X B 2009 Chin. Phys. B 18 2757
[10] Zhang Y, Zhang X J, Fang G Y 2012 Acta Phys. Sin. 61 184203 (in Chinese) [张宇, 张晓娟, 方广有 2012 61 184203]
[11] Nieto-Vesperinas M, Sánchez-Gil J A 1993 J. Opt. Soc. Am. A 10 150
[12] Yuan Y, Sun C M, Zhang X B 2010 Acta Phys. Sin. 59 2097 (in Chinese) [袁艳, 孙成明, 张修宝 2010 59 2097]
[13] Ruiz-Cortés V, Dainty C 2012 J. Opt. Soc. Am. A 29 1154
[14] Cook R L, Torrance K E 1982 ACM Trans. Graph. 1 7
[15] Tagare H D, DeFigueiredo R J 1993 CVGIP: Image Understanding 57 265
-
[1] Boschker J E, Tybell T 2012 Appl. Phys. Lett. 100 151604
[2] Frankot R T, Chellappa R 1988 TPAMI 10 439
[3] Fleming R W, Torralba A, Adelson E H 2004 J. Vision. 4 798
[4] Guo L X, Wang Y H, Wu Z S 2005 Acta Phys. Sin. 54 96 (in Chinese) [郭立新, 王运华, 吴振森 2005 54 96]
[5] Zhang L H, Yang Y, Zang H G, Hu S J, Chen W B, Lu Y T 2008 Chinese J. Lasers 35 1001 (in Chinese) [张雷洪, 杨艳, 臧华国, 胡善江, 陈卫标, 陆雨田 2008 中国激光 35 1001]
[6] Ishimaru A 1991 Proc. IEEE 79 1359
[7] Kuo C H, Moghaddam M 2006 IEEE Antenn. Propag. M 54 2917
[8] Johnson J T 2002 IEEE Antenn. Propag. M 50 1361
[9] Li J, Guo L X, Zeng H, Han X B 2009 Chin. Phys. B 18 2757
[10] Zhang Y, Zhang X J, Fang G Y 2012 Acta Phys. Sin. 61 184203 (in Chinese) [张宇, 张晓娟, 方广有 2012 61 184203]
[11] Nieto-Vesperinas M, Sánchez-Gil J A 1993 J. Opt. Soc. Am. A 10 150
[12] Yuan Y, Sun C M, Zhang X B 2010 Acta Phys. Sin. 59 2097 (in Chinese) [袁艳, 孙成明, 张修宝 2010 59 2097]
[13] Ruiz-Cortés V, Dainty C 2012 J. Opt. Soc. Am. A 29 1154
[14] Cook R L, Torrance K E 1982 ACM Trans. Graph. 1 7
[15] Tagare H D, DeFigueiredo R J 1993 CVGIP: Image Understanding 57 265
计量
- 文章访问数: 6380
- PDF下载量: 684
- 被引次数: 0