-
The dense electron gas interior neutron star is high degenerate and relativistic. The observation of neutron star about its thermal and magnetic effects depends on transport properties of the electron gas which is thought as the magnetic carrier. Its Landau levels in magnetic field are quantized and highly degenerate. The energy difference of an electron gas between in and not in magnetic field determines the magnetization of the gas, and the corresponding susceptipilities can be obtained through the thermodynamic calculation. When the magnetic field is weak, the susceptipility is 10-3 having similar order as in white dwarf. While in strong field the magnetization has the de Haas-van Alphen fluctuant effect like in microtherm metals. The differential susceptipilities can equal or exceed critical for high order harmonic frequency. Correspondingly, there is probably the phase-instability occuring in dense electron gas and the stable state is consisted of two different magnetization phases similar as the first-order phase transition of water. But if, there is a surface energy at the boundary then there is metastable state of homogeneous magnetization. The phase transition of interior neutron star can be observed through its electromagnetic radiation.This electromagnetic radiation may provide the extra energy in starquake model which was proposed to explain the giant flash of a magnetar.
-
Keywords:
- neutron star /
- relativistic /
- Landau levels /
- magnetization
[1] Bhattacharya D, van den Heuvel E P J 1991 Phys. Rep. 203 1
[2] Thompson C, Duncan D C 1995 MNRAS 275 255
[3] Angel J P R, Borra E B, Landstreet J D 1981 ApJS. 45 457
[4] Duncan R C, Thompson C 1992 ApJ. 392 L9
[5] Ruderman R 1991 ApJ. 382 576
[6] Gavriil F P, Gonzalez M E, Gotthelf E V, Kaspi V M, Livingstone M A, Woods P M 2008 Science 319 1802
[7] Rea N, Esposito P, Turolla R, Israel G L, Zane S, Stella L, Mereghetti S, Tiengo A 2010 Science 330 944
[8] Lee H J, Canuto V, Chiu H Y, Chiuderi C 1969 Phys. Rev. Lett. 23 390
[9] Canuto V, Chiu H Y 1971 Space Science Reviews 12 3
[10] Visvanathan S 1962 Physics of Fluids 5 701
[11] Canuto V, Chiu H Y 1968 Physical Review 173 1229
[12] Chudnovsky E M 1981 Journal of Physics A: Mathematical and General 14 2091
[13] Wang Z J, Lü G L, Zhu C H, Zhang J 2011 Acta Physica Sinica 60 049702 (in Chinese)
[14] Shoenberg D 1962 Phil. Trans. Roy.Soc. 255 85
[15] Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402
[16] Ji A C, Liu W M, Song J L and Zhou F 2008 Phys. Rev. Lett. 101 010402
[17] Qi R, Yu X L, Li Z B, Liu W M 2009 Phys. Rev. Lett. 102 185301
[18] Condon J H 1966 Physical Review 145 526
[19] Johnson M H, Lippmann B A 1949 Physical Review 76 828
-
[1] Bhattacharya D, van den Heuvel E P J 1991 Phys. Rep. 203 1
[2] Thompson C, Duncan D C 1995 MNRAS 275 255
[3] Angel J P R, Borra E B, Landstreet J D 1981 ApJS. 45 457
[4] Duncan R C, Thompson C 1992 ApJ. 392 L9
[5] Ruderman R 1991 ApJ. 382 576
[6] Gavriil F P, Gonzalez M E, Gotthelf E V, Kaspi V M, Livingstone M A, Woods P M 2008 Science 319 1802
[7] Rea N, Esposito P, Turolla R, Israel G L, Zane S, Stella L, Mereghetti S, Tiengo A 2010 Science 330 944
[8] Lee H J, Canuto V, Chiu H Y, Chiuderi C 1969 Phys. Rev. Lett. 23 390
[9] Canuto V, Chiu H Y 1971 Space Science Reviews 12 3
[10] Visvanathan S 1962 Physics of Fluids 5 701
[11] Canuto V, Chiu H Y 1968 Physical Review 173 1229
[12] Chudnovsky E M 1981 Journal of Physics A: Mathematical and General 14 2091
[13] Wang Z J, Lü G L, Zhu C H, Zhang J 2011 Acta Physica Sinica 60 049702 (in Chinese)
[14] Shoenberg D 1962 Phil. Trans. Roy.Soc. 255 85
[15] Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402
[16] Ji A C, Liu W M, Song J L and Zhou F 2008 Phys. Rev. Lett. 101 010402
[17] Qi R, Yu X L, Li Z B, Liu W M 2009 Phys. Rev. Lett. 102 185301
[18] Condon J H 1966 Physical Review 145 526
[19] Johnson M H, Lippmann B A 1949 Physical Review 76 828
Catalog
Metrics
- Abstract views: 7948
- PDF Downloads: 567
- Cited By: 0