搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相对论简并电子气体的磁化

王兆军 吕国梁 朱春花 霍文生

引用本文:
Citation:

相对论简并电子气体的磁化

王兆军, 吕国梁, 朱春花, 霍文生

Magnetization of degenerate and relativistic electron gas

Wang Zhao-Jun, Zhu Chun-Hua, Huo Wen-Sheng,
PDF
导出引用
  • 中子星内部的致密电子是高度简并的相对论气体, 其输运性质与中子星磁或热的观测现象密切相关, 被认为是中子星磁场的主要载体. 外磁场中电子的朗道能级是分立的且高度简并的, 与无外场时的能量差决定 了系统的磁化程度, 用量子统计的方法可计算理想相对论电子气体的磁化率. 结果表明弱场条件下的磁化率在数量级上接近白矮星的10-3. 强磁场下的磁化呈现出类似在某些低温金属中出现的de Haas-van Alphen 震荡效应, 高次谐频的震荡幅度有可能超出临界磁化时的磁化率. 表明中子星内部有可能存在非稳定的磁化过程, 发生类似气液转化的一级相变过程, 出现两种磁化共存的稳定态或过冷磁化的亚稳态(若不同磁化态间存在表面能). 从亚稳态向稳定态的突然转化可能与磁星的辐射有关, 可以解释在磁星巨闪过程中观测到的额外辐射问题.
    The dense electron gas interior neutron star is high degenerate and relativistic. The observation of neutron star about its thermal and magnetic effects depends on transport properties of the electron gas which is thought as the magnetic carrier. Its Landau levels in magnetic field are quantized and highly degenerate. The energy difference of an electron gas between in and not in magnetic field determines the magnetization of the gas, and the corresponding susceptipilities can be obtained through the thermodynamic calculation. When the magnetic field is weak, the susceptipility is 10-3 having similar order as in white dwarf. While in strong field the magnetization has the de Haas-van Alphen fluctuant effect like in microtherm metals. The differential susceptipilities can equal or exceed critical for high order harmonic frequency. Correspondingly, there is probably the phase-instability occuring in dense electron gas and the stable state is consisted of two different magnetization phases similar as the first-order phase transition of water. But if, there is a surface energy at the boundary then there is metastable state of homogeneous magnetization. The phase transition of interior neutron star can be observed through its electromagnetic radiation.This electromagnetic radiation may provide the extra energy in starquake model which was proposed to explain the giant flash of a magnetar.
    • 基金项目: 国家自然科学基金(批准号: 10963003, 10763001, 11063002); 新疆自然科学基金(批准号: 2009211B01, 2010211B05);霍英东基金(批准号: 121107) 和新疆大学博士启动基金(批准号: BS110108)资助的课题.
    • Funds: Project supported by the National Natural science Foundation of China(Grant Nos. 10963003, 10763001, 11063002), the Natural Science Foundation of Xinjiang (Grant Nos. 2009211B01, 2010211B05), the Foundation of Huoyingdong (Grant No. 121107), and the Dr start-up Foundation of Xinjiang University (Grant No. BS110108).
    [1]

    Bhattacharya D, van den Heuvel E P J 1991 Phys. Rep. 203 1

    [2]

    Thompson C, Duncan D C 1995 MNRAS 275 255

    [3]

    Angel J P R, Borra E B, Landstreet J D 1981 ApJS. 45 457

    [4]

    Duncan R C, Thompson C 1992 ApJ. 392 L9

    [5]

    Ruderman R 1991 ApJ. 382 576

    [6]

    Gavriil F P, Gonzalez M E, Gotthelf E V, Kaspi V M, Livingstone M A, Woods P M 2008 Science 319 1802

    [7]

    Rea N, Esposito P, Turolla R, Israel G L, Zane S, Stella L, Mereghetti S, Tiengo A 2010 Science 330 944

    [8]

    Lee H J, Canuto V, Chiu H Y, Chiuderi C 1969 Phys. Rev. Lett. 23 390

    [9]

    Canuto V, Chiu H Y 1971 Space Science Reviews 12 3

    [10]

    Visvanathan S 1962 Physics of Fluids 5 701

    [11]

    Canuto V, Chiu H Y 1968 Physical Review 173 1229

    [12]

    Chudnovsky E M 1981 Journal of Physics A: Mathematical and General 14 2091

    [13]

    Wang Z J, Lü G L, Zhu C H, Zhang J 2011 Acta Physica Sinica 60 049702 (in Chinese)

    [14]

    Shoenberg D 1962 Phil. Trans. Roy.Soc. 255 85

    [15]

    Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402

    [16]

    Ji A C, Liu W M, Song J L and Zhou F 2008 Phys. Rev. Lett. 101 010402

    [17]

    Qi R, Yu X L, Li Z B, Liu W M 2009 Phys. Rev. Lett. 102 185301

    [18]

    Condon J H 1966 Physical Review 145 526

    [19]

    Johnson M H, Lippmann B A 1949 Physical Review 76 828

  • [1]

    Bhattacharya D, van den Heuvel E P J 1991 Phys. Rep. 203 1

    [2]

    Thompson C, Duncan D C 1995 MNRAS 275 255

    [3]

    Angel J P R, Borra E B, Landstreet J D 1981 ApJS. 45 457

    [4]

    Duncan R C, Thompson C 1992 ApJ. 392 L9

    [5]

    Ruderman R 1991 ApJ. 382 576

    [6]

    Gavriil F P, Gonzalez M E, Gotthelf E V, Kaspi V M, Livingstone M A, Woods P M 2008 Science 319 1802

    [7]

    Rea N, Esposito P, Turolla R, Israel G L, Zane S, Stella L, Mereghetti S, Tiengo A 2010 Science 330 944

    [8]

    Lee H J, Canuto V, Chiu H Y, Chiuderi C 1969 Phys. Rev. Lett. 23 390

    [9]

    Canuto V, Chiu H Y 1971 Space Science Reviews 12 3

    [10]

    Visvanathan S 1962 Physics of Fluids 5 701

    [11]

    Canuto V, Chiu H Y 1968 Physical Review 173 1229

    [12]

    Chudnovsky E M 1981 Journal of Physics A: Mathematical and General 14 2091

    [13]

    Wang Z J, Lü G L, Zhu C H, Zhang J 2011 Acta Physica Sinica 60 049702 (in Chinese)

    [14]

    Shoenberg D 1962 Phil. Trans. Roy.Soc. 255 85

    [15]

    Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402

    [16]

    Ji A C, Liu W M, Song J L and Zhou F 2008 Phys. Rev. Lett. 101 010402

    [17]

    Qi R, Yu X L, Li Z B, Liu W M 2009 Phys. Rev. Lett. 102 185301

    [18]

    Condon J H 1966 Physical Review 145 526

    [19]

    Johnson M H, Lippmann B A 1949 Physical Review 76 828

  • [1] 刁彬, 许妍, 黄修林, 王夷博. 利用含δ介子的相对论平均场理论研究中子星潮汐形变性质.  , 2023, 72(2): 022601. doi: 10.7498/aps.72.20221599
    [2] 董爱军, 高志福, 杨晓峰, 王娜, 刘畅, 彭秋和. 在超强磁场中修正的相对论电子压强.  , 2023, 72(3): 030502. doi: 10.7498/aps.72.20220092
    [3] 赵诗艺, 刘承志, 黄修林, 王夷博, 许妍. 强磁场对中子星转动惯量与表面引力红移的影响.  , 2021, 70(22): 222601. doi: 10.7498/aps.70.20211051
    [4] 高朋林, 郑皓, 孙光爱. 中子星对自旋相关轴矢量新相互作用的约束.  , 2019, 68(18): 181102. doi: 10.7498/aps.68.20190477
    [5] 宋冬灵, 明亮, 单昊, 廖天河. 超强磁场下电子朗道能级稳定性及对电子费米能的影响.  , 2016, 65(2): 027102. doi: 10.7498/aps.65.027102
    [6] 计青山, 郝鸿雁, 张存喜, 王瑞. 硅烯中受电场调控的体能隙和朗道能级.  , 2015, 64(8): 087302. doi: 10.7498/aps.64.087302
    [7] 孙旭东, 陈菊华, 王永久. 磁荷对中子星质量半径比的约束.  , 2013, 62(16): 160401. doi: 10.7498/aps.62.160401
    [8] 王兆军, 吕国梁, 朱春花, 张军. 中子星中简并电子气体的临界磁化.  , 2011, 60(4): 049702. doi: 10.7498/aps.60.049702
    [9] 刘晶晶. 超强磁场对中子星外壳层核素56Fe,56Co,56Ni,56Mn和56Cr电子俘获过程中微子能量损失的影响.  , 2010, 59(7): 5169-5174. doi: 10.7498/aps.59.5169
    [10] 张 毅, 葛伟宽. 相对论性力学系统的Mei对称性导致的新守恒律.  , 2005, 54(4): 1464-1467. doi: 10.7498/aps.54.1464
    [11] 方建会, 闫向宏, 陈培胜. 相对论力学系统的形式不变性与Noether对称性.  , 2003, 52(7): 1561-1564. doi: 10.7498/aps.52.1561
    [12] 方建会, 陈培胜, 张 军, 李 红. 相对论力学系统的形式不变性与Lie对称性.  , 2003, 52(12): 2945-2948. doi: 10.7498/aps.52.2945
    [13] 傅景礼, 陈立群, 谢凤萍. 相对论性Birkhoff系统的对称性摄动及其逆问题.  , 2003, 52(11): 2664-2670. doi: 10.7498/aps.52.2664
    [14] 傅景礼, 陈立群, 薛 纭. 转动相对论Birkhoff系统的平衡稳定性.  , 2003, 52(2): 256-261. doi: 10.7498/aps.52.256
    [15] 傅景礼, 陈立群, 薛纭, 罗绍凯. 相对论Birkhoff系统的平衡稳定性.  , 2002, 51(12): 2683-2689. doi: 10.7498/aps.51.2683
    [16] 方建会, 赵嵩卿. 相对论性转动变质量系统的Lie对称性与守恒量.  , 2001, 50(3): 390-393. doi: 10.7498/aps.50.390
    [17] 罗绍凯, 傅景礼, 陈向炜. 转动系统相对论性Birkhoff动力学的基本理论.  , 2001, 50(3): 383-389. doi: 10.7498/aps.50.383
    [18] 乔永芬, 李仁杰, 孟军. 非完整转动相对论系统的Lindel?f方程.  , 2001, 50(9): 1637-1642. doi: 10.7498/aps.50.1637
    [19] 方建会. 相对论性变质量系统的守恒律.  , 2001, 50(6): 1001-1005. doi: 10.7498/aps.50.1001
    [20] 傅景礼, 陈立群, 罗绍凯, 陈向炜, 王新民. 相对论Birkhoff系统动力学研究.  , 2001, 50(12): 2289-2295. doi: 10.7498/aps.50.2289
计量
  • 文章访问数:  7946
  • PDF下载量:  567
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-10
  • 修回日期:  2012-06-28
  • 刊出日期:  2012-09-05

/

返回文章
返回
Baidu
map