-
In order to reveal the physical nature of high temperature oxidation of titanium-aluminous alloy from the electronic level, the atom embedded energy, affinity energy, binding energy and other electronic structure parameters are calculated by using recursive method combining with Castep, and the alloy oxidation mechanism is explored. The results show that there is a larger oxygen solubility in titanium and oxygen atoms can aggregate into titanium matrix near surface, and gradually spread into the deep matrix. Oxygen and titanium have a strong affinity to form a titanium oxide film. Aluminum can form clusters with mutual attraction between aluminum atoms in titanium matrix. Titanium atoms in aluminum clusters are mutually repulsive and form chemical compounds with aluminum atoms. Because of the closing affinity energy between aluminum and titanium with oxygen, the preferential oxidation of aluminum cannot occur, but titanium oxide and aluminum oxide form. The binding energy of Al2O3 is slightly lower than that of TiO2, therefore Al2O3 is more stable. Aluminum in TiO2 has a greater solubility, which can replace titanium to form more stable oxide Al2O3.
[1] Kim Y W, Dimiduk D M 1991 JOM 43 40
[2] Dimiduk D M 1999 Mater Sci. Eng. A 263 281
[3] Zhang L, Xiao W H, Jiang H R 2006 J. of Chin. of Nonferr. Metals 16 899 (in Chinese) [张亮, 肖伟豪, 姜惠仁 2006 中国有色金属学报 16 899]
[4] Striisnijder M F 1997 Surf. Eng. 13 323
[5] Rakowski J M 1995 Scripta Metallur. Mater. 33 997
[6] Liu G L 2010 Acta Phys. Sin . 59 494 (in Chinese) [刘贵立 2010 59 494]
[7] Marlo M, Milman V 2000 Phys. Rev. B 62 2899
[8] Vanderbilt D 1990 Phys. Rev. B 41 7892
[9] Hammer B, Hansen L B, Norkov J K 1999 Phys. Rev. B 59 7413
[10] Franscis G P, Payne M C 1990 J. Phys.: Condens Matter. 2 4395
[11] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[12] Haydock R 1980 Solid State Physics 35 (New York: Academic Press) p216
[13] Slater J C, Koster G F 1954 Phys. Rev. 94 14986
[14] Harrison W A 1980 Electronic Structure and the Properties of Solids (San Francisco: Freeman) p551
[15] Kong F T 2003 Rare Metal Mater. Eng. 32 81 (in Chinese) [孔凡涛 2003 稀有金属材料与工程 32 81]
-
[1] Kim Y W, Dimiduk D M 1991 JOM 43 40
[2] Dimiduk D M 1999 Mater Sci. Eng. A 263 281
[3] Zhang L, Xiao W H, Jiang H R 2006 J. of Chin. of Nonferr. Metals 16 899 (in Chinese) [张亮, 肖伟豪, 姜惠仁 2006 中国有色金属学报 16 899]
[4] Striisnijder M F 1997 Surf. Eng. 13 323
[5] Rakowski J M 1995 Scripta Metallur. Mater. 33 997
[6] Liu G L 2010 Acta Phys. Sin . 59 494 (in Chinese) [刘贵立 2010 59 494]
[7] Marlo M, Milman V 2000 Phys. Rev. B 62 2899
[8] Vanderbilt D 1990 Phys. Rev. B 41 7892
[9] Hammer B, Hansen L B, Norkov J K 1999 Phys. Rev. B 59 7413
[10] Franscis G P, Payne M C 1990 J. Phys.: Condens Matter. 2 4395
[11] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[12] Haydock R 1980 Solid State Physics 35 (New York: Academic Press) p216
[13] Slater J C, Koster G F 1954 Phys. Rev. 94 14986
[14] Harrison W A 1980 Electronic Structure and the Properties of Solids (San Francisco: Freeman) p551
[15] Kong F T 2003 Rare Metal Mater. Eng. 32 81 (in Chinese) [孔凡涛 2003 稀有金属材料与工程 32 81]
Catalog
Metrics
- Abstract views: 8601
- PDF Downloads: 638
- Cited By: 0