搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温高压下镁及典型镁铝合金的电热导率研究

陈浩 徐远骥 咸家伟 高兴誉 田付阳 宋海峰

引用本文:
Citation:

高温高压下镁及典型镁铝合金的电热导率研究

陈浩, 徐远骥, 咸家伟, 高兴誉, 田付阳, 宋海峰

A Study on Electrical and Thermal Conductivity of Mg and Mg-Al Alloys under High Temperature and Pressure

CHEN Hao, XU Yuanji, XIAN Jiawei, GAO Xingyu, TIAN Fuyang, SONG Haifeng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 金属材料因其优异的电输运性能和良好的散热性能, 在工业领域应用广泛. 高温高压条件下, 实验测量金属的电热导率难度大且成本高, 数值模拟则是一种高效的方法. 本研究基于Kubo-Greenwood (KG) 公式结合第一性原理分子动力学开发了电导率和电子热导率计算软件TRansport at EXtremes (TREX). 采用该软件计算了镁及镁铝合金 AZ31B在 300~1200 K 和 0~50 GPa 温压范围内的电导率和电子热导率, 并与Boltzmann transport equation (BTE) 的计算结果进行了对比. 应用Slack方程计算其晶格热导率, 结合电子热导率得到了其总热导率. TREX 软件的计算结果与实验测试数据高度吻合, 充分验证了其计算电热导率的准确性, 并系统揭示了电热导率随温度与压强的变化规律. 本文数据集可科学数据银行数据库https://www.doi.org/10.57760/sciencedb.j00213.00128中访问获取(审稿阶段请通过私有访问链接查看本文数据集https://www.scidb.cn/s/jA7rq2).
    Metallic materials are widely used in industrial applications due to their excellent electrical transport properties and superior thermal dissipation performance. However, experimental measurements of electrical and thermal conductivity under high-temperature and high-pressure conditions are challenging and costly. This makes numerical simulation an efficient alternative. In this study, we developed a computational software named TRansport at EXtremes (TREX). It is based on the Kubo-Greenwood (KG) formula combined with first-principles molecular dynamics. This software is used to calculate electrical conductivity and electronic thermal conductivity. Using magnesium and magnesium-aluminum alloy AZ31B as research subjects, we systematically investigated their electrical and thermal transport properties. The temperature range was 300~1200 K, and the pressure range was 0~50 GPa. The methodology involved employing first-principles molecular dynamics simulations to obtain equilibrium configurations of high-temperature disordered structures. Electrical conductivity and electronic thermal conductivity were calculated using the KG formula. Lattice thermal conductivity was determined via the Slack equation. To validate the reliability of our approach, we performed comparative calculations using the Boltzmann transport equation (BTE). The results were cross-verified with experimental data from Sichuan University and the Aerospace Materials Testing and Analysis Center. The findings demonstrate that the maximum relative error between computational and experimental results is within 20%. This confirms the accuracy of our method. Additionally, we elucidated the variation patterns of electrical and thermal conductivity in magnesium and AZ31B alloy with temperature and pressure. These patterns include the reduction in electrical conductivity due to aluminum doping, the significant enhancement of conductivity under high pressure, and the unique temperature-induced thermal conductivity enhancement in AZ31B alloy. The TREX program developed in this study and the established performance dataset provide essential tools and data support. They are useful for research on electrical and thermal transport mechanisms in metallic materials under extreme conditions, as well as for engineering applications. The dataset supporting this article can be accessed and obtained from the Science Data Bank repository at https://www.doi.org/10.57760/sciencedb.j00213.00128. (During the review stage, please access the dataset via the private access link: https://www.scidb.cn/s/jA7rq2.)
  • 图 2  TREX程序(基于KG公式与AIMD模拟) 计算电导率和电子热导率的流程示意图. 红色虚线框表示TREX程序的核心功能(包括平衡构型提取、电子输运性质计算等); 蓝色框表示与第一性原理计算软件相关的计算内容(如第一性原理分子动力学、电子结构、跃迁矩阵等)

    Fig. 2.  Schematic diagram of the workflow for calculating electrical conductivity and electronic thermal conductivity using the TREX code (based on the Kubo-Greenwood formula and AIMD simulations). The red dashed box indicates the core functions of the TREX code (including equilibrium configuration extraction, electronic transport property calculations, etc.). The blue boxes represent calculations related to first-principles software (such as ab initio molecular dynamics, electronic structure, and transition matrices).

    图 1  512个原子的AZ31B合金超胞结构示意图. 蓝色原子表示镁, 红色原子表示铝

    Fig. 1.  Schematic diagram of the supercell structure of AZ31B alloy with 512 atoms. Blue atoms represent magnesium, and red atoms represent aluminum.

    图 3  图(a) 表示镁单质电导率计算结果与实验值对比图, 竖点线表示镁在常压条件下的熔化温度. 图(b) 表示AZ31B合金电导率计算结果与实验值对比图, 黑色(红色、蓝色) 图例表示0 GPa (40、50 GPa) 的实验和计算结果

    Fig. 3.  Figure (a) shows the comparison between the calculated electrical conductivity of magnesium single crystal and the experimental values, with the vertical dotted line indicating the melting temperature of magnesium under ambient pressure. Figure (b) presents the comparison between the calculated electrical conductivity of AZ31B alloy and the experimental values, where the black (red, blue) legend represents the experimental and calculated results at 0 GPa (40, 50 GPa).

    图 4  图(a) 呈现了镁的热导率各分项贡献的组成. 图(b) 呈现了AZ31B合金的热导率各分项贡献的组成, 实线和实心(虚线和空心) 图例表示0 GPa (40 GPa) 的计算结果. ETC表示电子热导率, LTC表示晶格热导率, TTC表示总热导率

    Fig. 4.  Figure (a) shows the composition of various contributions to the thermal conductivity of magnesium. Figure (b) presents the composition of different contributions to the thermal conductivity of AZ31B alloy, where solid lines and solid symbols (dashed lines and hollow symbols) represent the calculated results at 0 GPa (40 GPa). Here, ETC denotes the electronic thermal conductivity, LTC represents the lattice thermal conductivity, and TTC stands for the total thermal conductivity.

    图 5  图(a) 表示镁单质热导率计算结果与实验值对比图, 竖点线表示镁在常压条件下的熔化温度. 图(b) 表示AZ31B合金热导率计算结果与实验值对比图, 黑色(红色) 图例表示0 GPa (40 GPa) 的实验和计算结果, 红色虚线表示对40 GPa实验结果的线性拟合

    Fig. 5.  Figure (a) presents a comparison between the calculated and experimental values of thermal conductivity for pure magnesium, with the vertical dotted line indicating the melting temperature of magnesium under ambient pressure. Figure (b) shows a comparison between the calculated and experimental values of thermal conductivity for AZ31B alloy, where black (red) symbols represent the experimental and computational results at 0 GPa (40 GPa), and the red dashed line denotes the linear fit to the experimental data at 40 GPa.

    表 1  电子弛豫时间τ (单位: 10–14 s) 随温度T变化的拟合公式$ \tau=AT^{-r} $

    Table 1.  The fitting formula for the electron relaxation time τ (unit: 10–14 s) as a function of temperature T is given by $ \tau = A T^{-r} $.

    材料 压强(GPa) 参数A 参数r R2
    Mg 0 1306.36 1.12 0.9999
    AZ31B 0 52.54 0.58 0.9976
    AZ31B 40 230.74 0.76 0.9953
    AZ31B 50 182.05 0.73 0.9993
    下载: 导出CSV
    Baidu
  • [1]

    王奥, 盛宇飞, 鲍华 2024 73 037201Google Scholar

    Wang Ao S Y F, Hua B 2024 Acta Phys. Sin. 73 037201Google Scholar

    [2]

    Ventura G, Perfetti M 2014 Electrical and Thermal Conductivity (Dordrecht: Springer Netherlands), pp 131–168

    [3]

    Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D 2016 Progress in Polymer Science 61 1Google Scholar

    [4]

    Reif-Acherman S 2011 Revista Brasileira de Ensino de Física 33 4602

    [5]

    Demyanov G S, Knyazev D V, Levashov P R 2022 Phys. Rev. E 105 035307

    [6]

    Vlček V, De Koker N, Steinle-Neumann G 2012 Phys. Rev. B 85 184201Google Scholar

    [7]

    Naumov I I, Hemley R J 2015 Phys. Rev. Lett. 114 156403Google Scholar

    [8]

    Matsuoka T, Shimizu K 2009 Nature 458 186Google Scholar

    [9]

    Kietzmann A, Redmer R, Desjarlais M P, Mattsson T R 2008 Phys. Rev. Lett. 101 070401Google Scholar

    [10]

    崔洋, 李寿航, 应韬, 鲍华, 曾小勤 2021 金属学报 57 375

    Yang C, Shouhang L, Tao Y, Hua B, Xiaoqin Z 2021 Acta Metallurgica Sinica 57 375

    [11]

    Reif F 2009 Fundamentals of statistical and thermal physics (New York: McGraw-Hill), pp 483–522

    [12]

    Bulusu A, Walker D 2008 Superlattices and Microstructures 44 1Google Scholar

    [13]

    Migdal K, Zhakhovsky V, Yanilkin A, Petrov Y V, Inogamov N 2019 Applied Surface Science 478 818Google Scholar

    [14]

    Calderín L, Karasiev V, Trickey S 2017 Computer Physics Communications 221 118Google Scholar

    [15]

    French M, Mattsson T R 2014 Phys. Rev. B 90 165113Google Scholar

    [16]

    Kramer D A 2010 Springer Handbook of Materials Data (Cham: Springer International Publishing), pp 151–159

    [17]

    Zhang Q, Fu J, Zhou J, Qi L, Li H 2024 Chemical Engineering Journal 496 154023Google Scholar

    [18]

    Xin W, Wang S, Yan Z 2025 Materials Today Communications 43 111584Google Scholar

    [19]

    Madsen G K, Carrete J, Verstraete M J 2018 Computer Physics Communications 231 140Google Scholar

    [20]

    Slack G A 1973 Journal of Physics and Chemistry of Solids 34 321Google Scholar

    [21]

    Moseley L, Lukes T 1978 American Journal of Physics 46 676Google Scholar

    [22]

    Knyazev D V, Levashov P R 2019 Contributions to Plasma Physics 59 345Google Scholar

    [23]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864Google Scholar

    [24]

    Kohn W, Sham L J 1965 Physical Review 140 A1133Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Computational Materials Science 6 15Google Scholar

    [26]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [27]

    Blöchl P 1994 Phys. Rev. B 50 17953Google Scholar

    [28]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [29]

    Kubo R, Yokota M, Nakajima S 1957 Journal of the Physical Society of Japan 12 1203Google Scholar

    [30]

    Tian F, Lin D Y, Gao X, Zhao Y F, Song H F 2020 Journal of Chemical Physics 153 034101Google Scholar

    [31]

    Desjarlais M, Kress J, Collins L 2002 Phys. Rev. E 66 025401

    [32]

    Choi G, Kim H S, Lee K, Park S H, Cha J, Chung I, Lee W B 2017 Journal of Alloys and Compounds 727 1237Google Scholar

    [33]

    Ahmad S, Mahanti S D 2010 Phys. Rev. B 81 165203Google Scholar

    [34]

    Lang H N D, van Kempen H, Wyder P 1978 Journal of Physics F: Metal Physics 8 L39Google Scholar

    [35]

    Iida T, Guthrie R I L 1988 The physical properties of liquid metals (New York: Oxford Clarendon Press), pp 266–253

    [36]

    Pan H, Pan F, Wang X, Peng J, Gou J, She J, Tang A 2013 International Journal of Thermophysics 34 1336Google Scholar

    [37]

    Chen F, Huang Q, Jiang Z, Zhao J, Sun B, Li Y 2015 Vacuum 115 80Google Scholar

    [38]

    Motta C, El-Mellouhi F, Sanvito S 2015 Scientific reports 5 12746Google Scholar

    [39]

    Madsen G K, Singh D J 2006 Computer Physics Communications 175 67Google Scholar

    [40]

    Yue S Y, Zhang X, Stackhouse S, Qin G, Di Napoli E, Hu M 2016 Phys. Rev. B 94 075149Google Scholar

    [41]

    Blakemore J S 1985 Solid state physics (Cambridge: Cambridge University Press), pp 149–292

    [42]

    Ho C Y, Powell R W, Liley P E 1972 Journal of Physical and Chemical Reference Data 1 279Google Scholar

    [43]

    Ying T, Zheng M, Li Z, Qiao X 2014 Journal of Alloys and Compounds 608 19Google Scholar

  • [1] 李高芳, 殷文, 黄敬国, 崔昊杨, 叶焓静, 高艳卿, 黄志明, 褚君浩. 太赫兹时域光谱技术研究S掺杂GaSe晶体的电导率特性.  , doi: 10.7498/aps.72.20221548
    [2] 郑建军, 张丽萍. 单层Cu2X的热电性质.  , doi: 10.7498/aps.72.20222015
    [3] 郑建军, 张丽萍. 单层Cu2X(X=S,Se):具有低晶格热导率的优秀热电材料.  , doi: 10.7498/aps.72.20220015
    [4] 唐道胜, 华钰超, 周艳光, 曹炳阳. GaN薄膜的热导率模型研究.  , doi: 10.7498/aps.70.20201611
    [5] 杜一帅, 康维, 郑瑞伦. 外延石墨烯电导率和费米速度随温度变化规律研究.  , doi: 10.7498/aps.66.014701
    [6] 付志坚, 贾丽君, 夏继宏, 唐可, 李召红, 权伟龙, 陈其峰. 温稠密钛电导率计算.  , doi: 10.7498/aps.65.065201
    [7] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率.  , doi: 10.7498/aps.62.026501
    [8] 李屹同, 沈谅平, 王浩, 汪汉斌. 水基ZnO纳米流体电导和热导性能研究 .  , doi: 10.7498/aps.62.124401
    [9] 张忻, 马旭颐, 张飞鹏, 武鹏旭, 路清梅, 刘燕琴, 张久兴. 纳米结构碲化铋合金的制备及电热输运特性.  , doi: 10.7498/aps.61.047201
    [10] 陈云云, 郑改革, 顾芳, 李振华. 尘埃粒子电势对等离子体电导率的影响.  , doi: 10.7498/aps.61.154202
    [11] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析.  , doi: 10.7498/aps.60.037102
    [12] 李世彬, 吴志明, 袁 凯, 廖乃镘, 李 伟, 蒋亚东. 氢化非晶硅薄膜的热导率研究.  , doi: 10.7498/aps.57.3126
    [13] 蒋吉昊, 王桂吉, 杨 宇. 一种测量金属电爆炸过程中电导率的新方法.  , doi: 10.7498/aps.57.1123
    [14] 何国荣, 郑婉华, 渠红伟, 杨国华, 王 青, 曹玉莲, 陈良惠. 键合界面对面发射激光器光与热性质的影响.  , doi: 10.7498/aps.57.1840
    [15] 杨凤霞, 张端明, 邓宗伟, 姜胜林, 徐 洁, 李舒丹. 基体电导率对0-3型铁电复合材料高压极化行为及损耗的影响.  , doi: 10.7498/aps.57.3840
    [16] 全荣辉, 韩建伟, 黄建国, 张振龙. 电介质材料辐射感应电导率的模型研究.  , doi: 10.7498/aps.56.6642
    [17] 徐任信, 陈 文, 周 静. 聚合物电导率对0-3型压电复合材料极化性能的影响.  , doi: 10.7498/aps.55.4292
    [18] 石雁祥, 葛德彪, 吴 健. 尘埃粒子充放电过程对尘埃等离子体电导率的影响.  , doi: 10.7498/aps.55.5318
    [19] 罗派峰, 唐新峰, 李 涵, 刘桃香. Ba和Ce两种原子复合填充BamCenFeCo3Sb12化合物的合成及热电性能.  , doi: 10.7498/aps.53.3234
    [20] 杨宏顺, 李鹏程, 柴一晟, 余旻, 李志权, 杨东升, 章良, 王喻宏, 李明德, 曹烈兆, 龙云泽, 陈兆甲. La2CuO4掺锌样品的低温电阻率与热导率研究.  , doi: 10.7498/aps.51.679
计量
  • 文章访问数:  46
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-04

/

返回文章
返回
Baidu
map