Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Redundancy-test-based hyper-parameters selection approach for support vector machines to predict time series

Yu Yan-Hua Song Jun-De

Citation:

Redundancy-test-based hyper-parameters selection approach for support vector machines to predict time series

Yu Yan-Hua, Song Jun-De
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The selection of hyper-parameters is a crucial point in support vector machine modeling. Different from previous method of choosing an optimal model by using basic statistics of residuals in, the new approach selects hyper-parameters by checking whether there is redundant information in residual sequence. Furthermore, omni-directional correlation function (ODCF) is used to test redundancy in residual, and the accuracy of the method is proved by theoretical analysis and numerical simulation. Experiments conducted on benchmark time series, annual sunspot number and Mackey-Glass time series, indicating that the proposed method has better performance than the recorded in the literature.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61072060), the National Key Project of Scientific and Technical Supporting Programs of China (Grant No. 2009BAH39B03), the National High Technology Research and Development Program of China (Grant No. 2011AA100706), the Research Fund for the Doctoral Program of Higher Education (Grant No. 20110005120007), the Fundamental Research Funds for the Central Universities (Grant No. 2012RC0205), the Co-construction Program with Beijing Municipal Commission of Education; Engineering Research Center of Information Networks, Ministry of Education.
    [1]

    Box G E P, Jenkins G M, Reinsel G C 2005 Time Series Analysis: Forecasting and control. (Posts & Telecom Press)

    [2]

    Yang H, Wang R 2011 Acta Phys. Sin. 60 070508 (in Chinese) [杨红, 王瑞 2011 60 070508]

    [3]

    Chen Q, Ren X M 2010 Acta Phys. Sin. 59 2310 (in Chinese) [陈强, 任雪梅 2010 59 2310]

    [4]

    Shi Z W; Han M 2007 IEEE Trans. Neural Netw. 18 359

    [5]

    Cai J W, Hu S S, Tao H F 2007 Acta Phys. Sin. 56 6820 (in Chinese) [蔡俊伟, 胡寿松, 陶洪峰 2007 56 6820]

    [6]

    Cui W Z, Zhu C C, Bao W X, Liu J H 2005 Acta Phys. Sin. 54 3009 (in Chinese) [崔万照, 朱长纯, 保文星, 刘君华 2005 54 3009]

    [7]

    Ye M Y, Wang X D 2004 Chin. Phys. 13 454

    [8]

    Vapnik V N 1999 The Nature of Statistical Learning Theory (2nd Ed.) (New York: Springer)

    [9]

    Vapnik V N 1998 Statistical Learning Theory (New York: Wiley)

    [10]

    Sapankevych N I, Sankar R 2009 IEEE Comput. Intell. M. 5 28

    [11]

    Bayro-Corrochano E J, Arana-Daniel N 2010 IEEE Trans. Neural Netw. 21 1731

    [12]

    Grinblat G L, Uzal L C, Ceccatto H A, Granitto P M 2011 IEEE Trans. Neural netw. 22 37

    [13]

    Yang X W, Zhang G Q, Lu J, Ma J 2011 IEEE Trans. on Fuzzy Syst. 19 105

    [14]

    Cristianini N, Shawe-Taylor J (Translated by Li G Z, Wang M and Zeng H J) 2005 An introduction to support vector machines and other kernel-based learning methods (Beijing: Publishing House of Electronics Industry) (in Chinese) [Cristianini N, Shawe-Taylor J著 李国正, 王猛, 曾华军 译 2005 支持向量机导论 (北京:电子工业出版社)]

    [15]

    Schölkopf B, Bartlett P, Smola A, and Williamson R Proceedings of ICANN'98, Perspectives in Neural Compution (Berlin: Springer L. Niklasson, M Bodén, and T Ziemke, Ed.) p111

    [16]

    Kwok J T, Tsang I W 2003 IEEE Trans. Neural Netw. 14 544

    [17]

    Smola A, Murata N, Schölkopf B and Muller K 1998 Proceedings of ICANN (Berlin: Springer Verlag) p105

    [18]

    Mattera D, Haykin S 1999 Support Vector Machines for dynamic reconstruction of a chaotic system in: Advances in Kernel Methods: Support Vector Machine (Cambridge: MIT Press)

    [19]

    herkassky V, Mulier F 1998 Learning from Data: Concepts, Theory and Methods (New York: John Wiley & Sons)

    [20]

    Scholkopf B, Burges J, Smola A 1999 Advances in Kernel Methods: Support Vector Machine (Cambridge: MIT Press)

    [21]

    Vladimir C, Ma Y Q 2004 Neural Networks 17 113

    [22]

    Cristianini N, Kandola J, Elissee A, ShaweTaylor J 2006 J. Mach. Learn. Res. 194 205

    [23]

    Zhang S Q, Jia J, Gao M, Han X 2010 Acta. Phys. Sin. 59 1576 (in Chinese) [张淑清, 贾健, 高敏, 韩叙 2010 59 1576]

    [24]

    Rong H N, Zhang G X, Jin W D 2006 J. Sys. Simu. 18 3204 (in Chinese) [荣海娜, 张葛祥, 金炜东 2006 系统仿真学报 18 3204]

    [25]

    Ljung L 1999 System Identification-Theory for the User (Prentice-Hall, Inc)

    [26]

    Zhang L F, Zhu Q M, Longden A 2009 IEEE Trans. neural netw. 20 1

    [27]

    Mao K Z, Billings S A 2000 Int. J. Control 73 132

    [28]

    Yu Y H, Song J D 2009 Journal of Electronics & Information Technology 31 2220(in Chinese)[于艳华, 宋俊德 2009电子与信息学报 31 2220]

    [29]

    Billings S A, Zhu Q M 1994 Int. J. Control 60 1107

    [30]

    Prichard D, Theiler J 1995 Physica D 84 476

    [31]

    Brock W A, Dechert W D, Scheinkman J 1996 Econometric Review 15 197

    [32]

    Zhang L F, Zhu Q M, Longden A 2007 Int. J. Syst. Sci. 38 47

    [33]

    Zhu Q M, Zhang L F, Longden A 2007 Automatica 43 1519

    [34]

    Cao L J 2003 Neurocomputing 51 321

    [35]

    Weigend A S, Huberman B A, Rumelhart D E 1990 Int. J. Neural Systems 1 193

    [36]

    Tong H, Lim K S 1980 J. Roy. Statist. Soc. 42 245

    [37]

    Ralavola L, Alche-Buc F 2003 Proceeding of NIPS Vancouver, Canada 2003 p981

  • [1]

    Box G E P, Jenkins G M, Reinsel G C 2005 Time Series Analysis: Forecasting and control. (Posts & Telecom Press)

    [2]

    Yang H, Wang R 2011 Acta Phys. Sin. 60 070508 (in Chinese) [杨红, 王瑞 2011 60 070508]

    [3]

    Chen Q, Ren X M 2010 Acta Phys. Sin. 59 2310 (in Chinese) [陈强, 任雪梅 2010 59 2310]

    [4]

    Shi Z W; Han M 2007 IEEE Trans. Neural Netw. 18 359

    [5]

    Cai J W, Hu S S, Tao H F 2007 Acta Phys. Sin. 56 6820 (in Chinese) [蔡俊伟, 胡寿松, 陶洪峰 2007 56 6820]

    [6]

    Cui W Z, Zhu C C, Bao W X, Liu J H 2005 Acta Phys. Sin. 54 3009 (in Chinese) [崔万照, 朱长纯, 保文星, 刘君华 2005 54 3009]

    [7]

    Ye M Y, Wang X D 2004 Chin. Phys. 13 454

    [8]

    Vapnik V N 1999 The Nature of Statistical Learning Theory (2nd Ed.) (New York: Springer)

    [9]

    Vapnik V N 1998 Statistical Learning Theory (New York: Wiley)

    [10]

    Sapankevych N I, Sankar R 2009 IEEE Comput. Intell. M. 5 28

    [11]

    Bayro-Corrochano E J, Arana-Daniel N 2010 IEEE Trans. Neural Netw. 21 1731

    [12]

    Grinblat G L, Uzal L C, Ceccatto H A, Granitto P M 2011 IEEE Trans. Neural netw. 22 37

    [13]

    Yang X W, Zhang G Q, Lu J, Ma J 2011 IEEE Trans. on Fuzzy Syst. 19 105

    [14]

    Cristianini N, Shawe-Taylor J (Translated by Li G Z, Wang M and Zeng H J) 2005 An introduction to support vector machines and other kernel-based learning methods (Beijing: Publishing House of Electronics Industry) (in Chinese) [Cristianini N, Shawe-Taylor J著 李国正, 王猛, 曾华军 译 2005 支持向量机导论 (北京:电子工业出版社)]

    [15]

    Schölkopf B, Bartlett P, Smola A, and Williamson R Proceedings of ICANN'98, Perspectives in Neural Compution (Berlin: Springer L. Niklasson, M Bodén, and T Ziemke, Ed.) p111

    [16]

    Kwok J T, Tsang I W 2003 IEEE Trans. Neural Netw. 14 544

    [17]

    Smola A, Murata N, Schölkopf B and Muller K 1998 Proceedings of ICANN (Berlin: Springer Verlag) p105

    [18]

    Mattera D, Haykin S 1999 Support Vector Machines for dynamic reconstruction of a chaotic system in: Advances in Kernel Methods: Support Vector Machine (Cambridge: MIT Press)

    [19]

    herkassky V, Mulier F 1998 Learning from Data: Concepts, Theory and Methods (New York: John Wiley & Sons)

    [20]

    Scholkopf B, Burges J, Smola A 1999 Advances in Kernel Methods: Support Vector Machine (Cambridge: MIT Press)

    [21]

    Vladimir C, Ma Y Q 2004 Neural Networks 17 113

    [22]

    Cristianini N, Kandola J, Elissee A, ShaweTaylor J 2006 J. Mach. Learn. Res. 194 205

    [23]

    Zhang S Q, Jia J, Gao M, Han X 2010 Acta. Phys. Sin. 59 1576 (in Chinese) [张淑清, 贾健, 高敏, 韩叙 2010 59 1576]

    [24]

    Rong H N, Zhang G X, Jin W D 2006 J. Sys. Simu. 18 3204 (in Chinese) [荣海娜, 张葛祥, 金炜东 2006 系统仿真学报 18 3204]

    [25]

    Ljung L 1999 System Identification-Theory for the User (Prentice-Hall, Inc)

    [26]

    Zhang L F, Zhu Q M, Longden A 2009 IEEE Trans. neural netw. 20 1

    [27]

    Mao K Z, Billings S A 2000 Int. J. Control 73 132

    [28]

    Yu Y H, Song J D 2009 Journal of Electronics & Information Technology 31 2220(in Chinese)[于艳华, 宋俊德 2009电子与信息学报 31 2220]

    [29]

    Billings S A, Zhu Q M 1994 Int. J. Control 60 1107

    [30]

    Prichard D, Theiler J 1995 Physica D 84 476

    [31]

    Brock W A, Dechert W D, Scheinkman J 1996 Econometric Review 15 197

    [32]

    Zhang L F, Zhu Q M, Longden A 2007 Int. J. Syst. Sci. 38 47

    [33]

    Zhu Q M, Zhang L F, Longden A 2007 Automatica 43 1519

    [34]

    Cao L J 2003 Neurocomputing 51 321

    [35]

    Weigend A S, Huberman B A, Rumelhart D E 1990 Int. J. Neural Systems 1 193

    [36]

    Tong H, Lim K S 1980 J. Roy. Statist. Soc. 42 245

    [37]

    Ralavola L, Alche-Buc F 2003 Proceeding of NIPS Vancouver, Canada 2003 p981

  • [1] Liang Ke-Da, Liu Teng-Fei, Chang Zhe, Zhang Meng, Li Zhi-Xin, Huang Song-Song, Wang Jing. Inversion models of internal solitary wave propagation speed in ocean based on least squares method and support vector machine. Acta Physica Sinica, 2023, 72(2): 028301. doi: 10.7498/aps.72.20221633
    [2] Zhang Yi-Jun, Mu Xiao-Dong, Guo Le-Meng, Zhang Peng, Zhao Dao, Bai Wen-Hua. A support vector machine training scheme based on quantum circuits. Acta Physica Sinica, 2023, 72(7): 070302. doi: 10.7498/aps.72.20222003
    [3] Zhang Tao, Chen Wan-Zhong, Li Ming-Yang. Automatic seizure detection of electroencephalogram signals based on frequency slice wavelet transform and SVM. Acta Physica Sinica, 2016, 65(3): 038703. doi: 10.7498/aps.65.038703
    [4] Song Kun, Gao Tai-Chang, Liu Xi-Chuan, Yin Min, Xue Yang. Method and experiment of rainfall intensity inversion using a microwave link based on support vector machine. Acta Physica Sinica, 2015, 64(24): 244301. doi: 10.7498/aps.64.244301
    [5] Zhao Zhi-Gang, Zhang Chun-Jie, Gou Xiang-Feng, Sang Hu-Tang. Solar cell temperature prediction model of support vector machine optimized by particle swarm optimization algorithm. Acta Physica Sinica, 2015, 64(8): 088801. doi: 10.7498/aps.64.088801
    [6] Meng Qing-Fang, Chen Shan-Shan, Chen Yue-Hui, Feng Zhi-Quan. Automatic detection of epileptic EEG based on recurrence quantification analysis and SVM. Acta Physica Sinica, 2014, 63(5): 050506. doi: 10.7498/aps.63.050506
    [7] Yu Yang, Hao Zhong-Qi, Li Chang-Mao, Guo Lian-Bo, Li Kuo-Hu, Zeng Qing-Dong, Li Xiang-You, Ren Zhao, Zeng Xiao-Yan. Identification of plastics by laser-induced breakdown spectroscopy combined with support vector machine algorithm. Acta Physica Sinica, 2013, 62(21): 215201. doi: 10.7498/aps.62.215201
    [8] Zhao Yong-Ping, Zhang Li-Yan, Li De-Cai, Wang Li-Feng, Jiang Hong-Zhang. Chaotic time series prediction using filtering window based least squares support vector regression. Acta Physica Sinica, 2013, 62(12): 120511. doi: 10.7498/aps.62.120511
    [9] Xing HongYan, Qi ZhengDong, Xu Wei. Weak signal estimation in chaotic clutter using selective support vector machine ensemble. Acta Physica Sinica, 2012, 61(24): 240504. doi: 10.7498/aps.61.240504
    [10] Wang Fang-Fang, Zhang Ye-Rong. An electromagnetic inverse scattering approach based on support vector machine. Acta Physica Sinica, 2012, 61(8): 084101. doi: 10.7498/aps.61.084101
    [11] Yan Xiao-Mei, Liu Ding. Control of fractional order chaotic system based on least square support vector machines. Acta Physica Sinica, 2010, 59(5): 3043-3048. doi: 10.7498/aps.59.3043
    [12] Zhang Jun-Feng, Hu Shou-Song. Chaotic time series prediction based on multi-kernel learning support vector regression. Acta Physica Sinica, 2008, 57(5): 2708-2713. doi: 10.7498/aps.57.2708
    [13] Wang Ge-Li, Yang Pei-Cai, Mao Yu-Qing. On the application of non-stationary time series prediction based on the SVM method. Acta Physica Sinica, 2008, 57(2): 714-719. doi: 10.7498/aps.57.714
    [14] Prediction of chaotic time series based on selective support vector machine ensemble. Acta Physica Sinica, 2007, 56(12): 6820-6827. doi: 10.7498/aps.56.6820
    [15] Zhang Jia-Shu, Dang Jian-Liang, Li Heng-Chao. Local support vector machine prediction of spatiotemporal chaotic time series. Acta Physica Sinica, 2007, 56(1): 67-77. doi: 10.7498/aps.56.67
    [16] Ye Mei-Ying. Control of chaotic system based on least squares support vector machine modeling. Acta Physica Sinica, 2005, 54(1): 30-34. doi: 10.7498/aps.54.30
    [17] Ye Mei-Ying, Wang Xiao-Dong, Zhang Hao-Ran. Chaotic time series forecasting using online least squares support vector machine regression. Acta Physica Sinica, 2005, 54(6): 2568-2573. doi: 10.7498/aps.54.2568
    [18] Liu Han, Liu Ding, Ren Hai-Peng. Chaos control based on least square support vector machines. Acta Physica Sinica, 2005, 54(9): 4019-4025. doi: 10.7498/aps.54.4019
    [19] Cui Wan-Zhao, Zhu Chang-Chun, Bao Wen-Xing, Liu Jun-Hua. Prediction of the chaotic time series using support vector machines for fuzzy rule-based modeling. Acta Physica Sinica, 2005, 54(7): 3009-3018. doi: 10.7498/aps.54.3009
    [20] Cui Wan-Zhao, Zhu Chang-Chun, Bao Wen-Xing, Liu Jun-Hua. Prediction of the chaotic time series using support vector machines. Acta Physica Sinica, 2004, 53(10): 3303-3310. doi: 10.7498/aps.53.3303
Metrics
  • Abstract views:  6694
  • PDF Downloads:  608
  • Cited By: 0
Publishing process
  • Received Date:  18 March 2012
  • Accepted Date:  13 June 2012
  • Published Online:  05 September 2012

/

返回文章
返回
Baidu
map