-
By solving the Milburn equation, we investigate the thermal entanglement properties of a two-qubit Heisenberg XY chain in the presence of intrinsic decoherence. The controls of nonuniform magnetic field, the initial state of two qubits, the relative phases and the amplitudes of the polarized qubits on thermal entanglement are studied. The results show that for a particular initial state, the thermal entanglement can be increased by the external magnetic field. The time behavior of the entanglement exhibits a strong dependence on the initial state of two qubits, and it can be manipulated by changing the relative phase and the amplitudes of the polarized qubits. It is also notable that stable entanglement, which is dependent on initial state of the qubit, occurs even in the presence of decoherence. The magnetic field may have a constructive effect on the stable entanglement for a certain initial state, and the Bell-diagonal state turns out to be a dark state of the system in the absence of the magnetic field.
-
Keywords:
- intrinsic decoherence /
- entanglement /
- Bell-diagonal state
[1] Wang X G 2001 Phys. Rev. A 64 012313
[2] Du X M, Man Z X, Xia Y J 2008 Acta. Phys. Sin. 57 7457 (in Chinese) [杜秀梅, 满忠晓, 夏云杰 2008 57 7457]
[3] Lu P, Wang S J 2009 Acta. Phys. Sin. 58 5955 (in Chinese) [卢鹏, 王顺金 2009 58 5955]
[4] Liu S X, Li S S, Kong X M 2011 Acta. Phys. Sin. 60 030303 (in Chinese) [刘圣鑫, 李莎莎, 孔祥木 2011 60 030303]
[5] Zhang Y L, Zhou B 2011 Acta. Phys. Sin. 60 120301 (in Chinese) [张英丽, 周斌 2011 60 120301]
[6] Shan C J, Cheng W W, Liu T K, Huang Y X and Li H 2008 Acta. Phys. Sin. 57 2687 (in Chinese) [单传家, 程维文, 刘堂昆, 黄燕霞, 李宏 2008 57 2687]
[7] Lidar D A, Bacon D, Whaley K B 1999 Phys. Rev. Lett. 82 4556
[8] Divincenzo D P, Bacon D, Kempe J, Burkard G, Whaley K B 2000 Nature 408 339
[9] Kamta G L 2002 Phys. Rev. Lett. 88 107901
[10] Asoundeh M, Karimipour V 2005 Phys. Rev. A 71 022308
[11] Li S B, Xu J B 2005 Phys. Lett. A 334 109
[12] Zhang D Y 2002 Acta. Phys. Sin. 51 0532 (in Chinese) [张登玉 2002 51 0532]
[13] Huang L Y, Fang M F 2008 Chin. Phys. B 17 2339
[14] Hu Z N, Youn S H, Kang K, Kin C S 2006 J. Phys. A 39 10523
[15] Milburn G J 1991 Phys. Rev. A 44 5401
[16] Wang X G 2004 Phys. Rev. E 69 066118
[17] Moya C H, Buzek V, Kim M S, Knight P L 1993 Phys. Rev. A 48 3900
[18] Xu J B, Zou X B, Yu J H 2004 Eur. Phys. J. D 10 295
[19] Malinovsky V S, Sola I R 2004 Phys. Rev. Lett. 93 190502
[20] Wootters W K 1998 Phys. Rev. Lett. 80 2245
-
[1] Wang X G 2001 Phys. Rev. A 64 012313
[2] Du X M, Man Z X, Xia Y J 2008 Acta. Phys. Sin. 57 7457 (in Chinese) [杜秀梅, 满忠晓, 夏云杰 2008 57 7457]
[3] Lu P, Wang S J 2009 Acta. Phys. Sin. 58 5955 (in Chinese) [卢鹏, 王顺金 2009 58 5955]
[4] Liu S X, Li S S, Kong X M 2011 Acta. Phys. Sin. 60 030303 (in Chinese) [刘圣鑫, 李莎莎, 孔祥木 2011 60 030303]
[5] Zhang Y L, Zhou B 2011 Acta. Phys. Sin. 60 120301 (in Chinese) [张英丽, 周斌 2011 60 120301]
[6] Shan C J, Cheng W W, Liu T K, Huang Y X and Li H 2008 Acta. Phys. Sin. 57 2687 (in Chinese) [单传家, 程维文, 刘堂昆, 黄燕霞, 李宏 2008 57 2687]
[7] Lidar D A, Bacon D, Whaley K B 1999 Phys. Rev. Lett. 82 4556
[8] Divincenzo D P, Bacon D, Kempe J, Burkard G, Whaley K B 2000 Nature 408 339
[9] Kamta G L 2002 Phys. Rev. Lett. 88 107901
[10] Asoundeh M, Karimipour V 2005 Phys. Rev. A 71 022308
[11] Li S B, Xu J B 2005 Phys. Lett. A 334 109
[12] Zhang D Y 2002 Acta. Phys. Sin. 51 0532 (in Chinese) [张登玉 2002 51 0532]
[13] Huang L Y, Fang M F 2008 Chin. Phys. B 17 2339
[14] Hu Z N, Youn S H, Kang K, Kin C S 2006 J. Phys. A 39 10523
[15] Milburn G J 1991 Phys. Rev. A 44 5401
[16] Wang X G 2004 Phys. Rev. E 69 066118
[17] Moya C H, Buzek V, Kim M S, Knight P L 1993 Phys. Rev. A 48 3900
[18] Xu J B, Zou X B, Yu J H 2004 Eur. Phys. J. D 10 295
[19] Malinovsky V S, Sola I R 2004 Phys. Rev. Lett. 93 190502
[20] Wootters W K 1998 Phys. Rev. Lett. 80 2245
Catalog
Metrics
- Abstract views: 7641
- PDF Downloads: 613
- Cited By: 0