Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation study on thermodynamic, dynamic and structural transition mechanisms during the formation of Ca70Mg30 metallic glass

Xu Chun-Long Hou Zhao-Yang Liu Rang-Su

Citation:

Simulation study on thermodynamic, dynamic and structural transition mechanisms during the formation of Ca70Mg30 metallic glass

Xu Chun-Long, Hou Zhao-Yang, Liu Rang-Su
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The rapid quenching process of Ca70Mg30 alloy is simulated by using the molecular dynamics method. During the liquid-glass transition process, the thermodynamic, dynamic and structural transition mechanisms are investigated deeply, and the relations between glass transition temperatures determined by different methods are discussed. It is found that both the simulated structural factor of Ca70Mg30 metallic glass and glass transition temperature are consistent with the experimental results, and the icosahedral local configuration plays a critical role in the formation of Ca70Mg30 metallic glass. The dynamic property of supercooled liquid gradually deviates from the Arrhenius law and satisfies the MCT power law due to the cage effect formed by neighbor atoms. It is also found that the structural glass transition temperature is close to the dynamic one, and they are higher than the calorimetric glass transition temperature. The relationship between them and the ideal dynamic glass transition temperature satisfies the Odagaki relation.
    • Funds: Project supported by the National Natural Foundation of China (Grant No. 51101022) the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. CHD2010JC083, CHD2012JC096).
    [1]

    Klement W, Willens R H, Duwez P 1960 Nature 187 869

    [2]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45

    [3]
    [4]
    [5]

    Inoue A, Takeuchi A 2011 Acta Mater. 59 2243

    [6]
    [7]

    Dai L H, Jiang M Q 2007 Adv. Mech. 37 346 (in Chinese) [戴兰宏, 蒋敏强 2007 力学进展 37 346]

    [8]
    [9]

    Anderson P W 1995 Science 267 1615

    [10]

    Wendt H R, Abraham F F 1978 Phys. Rev. Lett. 41 1244

    [11]
    [12]

    Li D H, Moore, R A, Wang S 1988 J. Chem. Phys. 88 2700

    [13]
    [14]
    [15]

    Qi Y, hin T, Kimura Y, Goddard III W A 1999 Phys. Rev. B 59 05205

    [16]
    [17]

    Zhang Y N, Wang L, Wang W M 2007 J. Phys.: Condens. Matter 19 196106

    [18]

    Li X P, Han Q Y, Liu H B, Chen K Y, Hu Z Q 1995 Acta Metal. Sin. 31 A356 (in Chinese) [李小平, 韩其勇, 刘洪波, 陈魁英, 胡状麒 1995 金属学报 31 A356]

    [19]
    [20]
    [21]

    Zhou G R, Gao Q M 2007 Acta Phys. Sin. 56 1499 (in Chinese) [周国荣, 高秋明 2007 56 1499]

    [22]
    [23]

    Dzugutov M, Simdyankin S I, Zetterling F H M 2002 Phys. Rev. Lett. 89 195701

    [24]
    [25]

    Liang Y C, Liu R S, Liu R S, Zhou L L, Tian Z A, Liu Q H 2010 Acta Phys. Sin. 59 7930 (in Chinese) [梁永超, 刘让苏, 朱轩民, 周丽丽, 田泽安, 刘全慧 2010 59 7930]

    [26]
    [27]

    Sun Y L, Shen J, Valladares A A 2009 J. Non-Cryst. Solids 106 073520

    [28]
    [29]

    Gtze W, Sjgren L 1992 Rep. Prog. Phys. 55 241

    [30]

    Suck J B, Rudin H, Gntherodt H J, Beck H 1981 J. Phys. C: Solid State Phys. 14 2305

    [31]
    [32]

    Hafner J 1983 Phys. Rev. B 27 678

    [33]
    [34]
    [35]

    Chen K Y, Li Q C 1993 Acta Phys. Sin. 42 1491 (in Chinese) [陈魁英, 李庆春 1993 42 1491]

    [36]

    Qi D W, Wang S 1991 Phys. Rev. B 44 884

    [37]
    [38]

    Hou Z Y, Liu L X, Liu R S, Tian Z A, Wang J G 2010 J. Appl. Phys. 107 083511

    [39]
    [40]
    [41]

    Hou Z Y, Liu R S, Liu H R, Tian Z A, Wang X, Zhou Q Y, Chen Z H 2007 J. Chem. Phys. 127 174503

    [42]

    Hou Z Y, Liu L X, Liu R S 2009 Acta Phys. Sin. 58 4817 (in Chinese) [侯兆阳, 刘丽霞, 刘让苏 2009 58 4817]

    [43]
    [44]
    [45]

    Wang S, Lai S K 1980 J. Phys. F 10 2717

    [46]
    [47]

    Li D H, Li X R, Wang S 1986 J. Phys. F 16 309

    [48]
    [49]

    Jin Z H, Lu K, Gong Y D, Hu Z Q 1997 J. Chem. Phys. 106 8830

    [50]

    Hoover W G, Ladd A J C and Moran B 1982 Phys. Rev. Lett. 48 1818

    [51]
    [52]
    [53]

    Evans D J 1983 J. Chem. Phys. 78 3297

    [54]
    [55]

    Nassif E, Lamparter P, Steev S 1983 Z. Naturfors. Sect. A 38 1206

    [56]
    [57]

    Vollmayr K, Kob W, Binder K 1996 Phys. Rev. B 54 15808

    [58]
    [59]

    Honeycut J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [60]
    [61]

    Vogel H 1921 Phys. Z 22 645

    [62]
    [63]

    Fulcher G S 1925 J. Am. Ceram. Soc. 8 339

    [64]
    [65]

    Tammann G, Hesse G 1926 Z. Anorg. Allg. Chem. 156 245

    [66]

    Faupel F, Frank W, Macht M P, Mehrer H, Naundorf V, Rtzke K, Schober H R, Sharma S K, Teichler H 2003 Rev. Mod. Phys. 75 237

    [67]
    [68]

    Kob W 1999 J. Phys.: Condens. Matter 11 R85

    [69]
    [70]

    Han X J, Teichler H 2007 Phys. Rev. E 75 061501

    [71]
    [72]
    [73]

    Odagaki T 1995 Phys. Rev. Lett. 75 3701

    [74]

    Hiwatari Y, Miyagawa H, Odagaki T 1991 Solid State Ionics 47 179

    [75]
  • [1]

    Klement W, Willens R H, Duwez P 1960 Nature 187 869

    [2]

    Wang W H, Dong C, Shek C H 2004 Mater. Sci. Eng. R 44 45

    [3]
    [4]
    [5]

    Inoue A, Takeuchi A 2011 Acta Mater. 59 2243

    [6]
    [7]

    Dai L H, Jiang M Q 2007 Adv. Mech. 37 346 (in Chinese) [戴兰宏, 蒋敏强 2007 力学进展 37 346]

    [8]
    [9]

    Anderson P W 1995 Science 267 1615

    [10]

    Wendt H R, Abraham F F 1978 Phys. Rev. Lett. 41 1244

    [11]
    [12]

    Li D H, Moore, R A, Wang S 1988 J. Chem. Phys. 88 2700

    [13]
    [14]
    [15]

    Qi Y, hin T, Kimura Y, Goddard III W A 1999 Phys. Rev. B 59 05205

    [16]
    [17]

    Zhang Y N, Wang L, Wang W M 2007 J. Phys.: Condens. Matter 19 196106

    [18]

    Li X P, Han Q Y, Liu H B, Chen K Y, Hu Z Q 1995 Acta Metal. Sin. 31 A356 (in Chinese) [李小平, 韩其勇, 刘洪波, 陈魁英, 胡状麒 1995 金属学报 31 A356]

    [19]
    [20]
    [21]

    Zhou G R, Gao Q M 2007 Acta Phys. Sin. 56 1499 (in Chinese) [周国荣, 高秋明 2007 56 1499]

    [22]
    [23]

    Dzugutov M, Simdyankin S I, Zetterling F H M 2002 Phys. Rev. Lett. 89 195701

    [24]
    [25]

    Liang Y C, Liu R S, Liu R S, Zhou L L, Tian Z A, Liu Q H 2010 Acta Phys. Sin. 59 7930 (in Chinese) [梁永超, 刘让苏, 朱轩民, 周丽丽, 田泽安, 刘全慧 2010 59 7930]

    [26]
    [27]

    Sun Y L, Shen J, Valladares A A 2009 J. Non-Cryst. Solids 106 073520

    [28]
    [29]

    Gtze W, Sjgren L 1992 Rep. Prog. Phys. 55 241

    [30]

    Suck J B, Rudin H, Gntherodt H J, Beck H 1981 J. Phys. C: Solid State Phys. 14 2305

    [31]
    [32]

    Hafner J 1983 Phys. Rev. B 27 678

    [33]
    [34]
    [35]

    Chen K Y, Li Q C 1993 Acta Phys. Sin. 42 1491 (in Chinese) [陈魁英, 李庆春 1993 42 1491]

    [36]

    Qi D W, Wang S 1991 Phys. Rev. B 44 884

    [37]
    [38]

    Hou Z Y, Liu L X, Liu R S, Tian Z A, Wang J G 2010 J. Appl. Phys. 107 083511

    [39]
    [40]
    [41]

    Hou Z Y, Liu R S, Liu H R, Tian Z A, Wang X, Zhou Q Y, Chen Z H 2007 J. Chem. Phys. 127 174503

    [42]

    Hou Z Y, Liu L X, Liu R S 2009 Acta Phys. Sin. 58 4817 (in Chinese) [侯兆阳, 刘丽霞, 刘让苏 2009 58 4817]

    [43]
    [44]
    [45]

    Wang S, Lai S K 1980 J. Phys. F 10 2717

    [46]
    [47]

    Li D H, Li X R, Wang S 1986 J. Phys. F 16 309

    [48]
    [49]

    Jin Z H, Lu K, Gong Y D, Hu Z Q 1997 J. Chem. Phys. 106 8830

    [50]

    Hoover W G, Ladd A J C and Moran B 1982 Phys. Rev. Lett. 48 1818

    [51]
    [52]
    [53]

    Evans D J 1983 J. Chem. Phys. 78 3297

    [54]
    [55]

    Nassif E, Lamparter P, Steev S 1983 Z. Naturfors. Sect. A 38 1206

    [56]
    [57]

    Vollmayr K, Kob W, Binder K 1996 Phys. Rev. B 54 15808

    [58]
    [59]

    Honeycut J D, Andersen H C 1987 J. Phys. Chem. 91 4950

    [60]
    [61]

    Vogel H 1921 Phys. Z 22 645

    [62]
    [63]

    Fulcher G S 1925 J. Am. Ceram. Soc. 8 339

    [64]
    [65]

    Tammann G, Hesse G 1926 Z. Anorg. Allg. Chem. 156 245

    [66]

    Faupel F, Frank W, Macht M P, Mehrer H, Naundorf V, Rtzke K, Schober H R, Sharma S K, Teichler H 2003 Rev. Mod. Phys. 75 237

    [67]
    [68]

    Kob W 1999 J. Phys.: Condens. Matter 11 R85

    [69]
    [70]

    Han X J, Teichler H 2007 Phys. Rev. E 75 061501

    [71]
    [72]
    [73]

    Odagaki T 1995 Phys. Rev. Lett. 75 3701

    [74]

    Hiwatari Y, Miyagawa H, Odagaki T 1991 Solid State Ionics 47 179

    [75]
  • [1] Jiang Shuang-Shuang, Zhu Li, Liu Si-Nan, Yang Zhan-Zhan, Lan Si, Wang Yin-Gang. Densification and heterogeneity enhancement of Fe-based metallic glass under local plastic flow. Acta Physica Sinica, 2022, 71(5): 058101. doi: 10.7498/aps.71.20211304
    [2] Densification and heterogeneity enhancement of a Fe-based metallic glass under local plastic flow. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211304
    [3] Jiang Wen-Long. Mechanism and quantitative study of specific heat change during glass transition of amorphous polystyrene and Pd40Ni10Cu30P20. Acta Physica Sinica, 2020, 69(12): 126401. doi: 10.7498/aps.69.20200331
    [4] Yu Hai-Bin, Yang Qun. Ultrastable glasses. Acta Physica Sinica, 2017, 66(17): 176108. doi: 10.7498/aps.66.176108
    [5] Wang Jun-Qiang, Ouyang Su. Extended elastic model for flow of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176102. doi: 10.7498/aps.66.176102
    [6] Ma Jiang, Yang Can, Gong Feng, Wu Xiao-Yu, Liang Xiong. Thermoplastic forming of bulk metallic glasses. Acta Physica Sinica, 2017, 66(17): 176404. doi: 10.7498/aps.66.176404
    [7] Yuan Chen-Chen. Bonding nature and the origin of ductility of metallic glasses. Acta Physica Sinica, 2017, 66(17): 176402. doi: 10.7498/aps.66.176402
    [8] Hu Li-Na, Zhao Xi, Zhang Chun-Zhi. Fragile-to-strong transition in metallic glass-forming liquids. Acta Physica Sinica, 2017, 66(17): 176403. doi: 10.7498/aps.66.176403
    [9] Yang Wen-Long, Han Jun-Sheng, Wang Yu, Lin Jia-Qi, He Guo-Qiang, Sun Hong-Guo. Molecular dynamics simulation on the glass transition temperature and mechanical properties of polyimide/functional graphene composites. Acta Physica Sinica, 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [10] Wu Bo-Qiang, Liu Hai-Rong, Liu Rang-Su, Mo Yun-Fei, Tian Ze-An, Liang Yong-Chao, Guan Shao-Kang, Huang Chang-Xiong. Simulation study of effect of cooling rate on evolution of microstructures during solidification of liquid Mg. Acta Physica Sinica, 2017, 66(1): 016101. doi: 10.7498/aps.66.016101
    [11] Deng Yong-He, Wen Da-Dong, Peng Chao, Wei Yan-Ding, Zhao Rui, Peng Ping. Heredity of icosahedrons: a kinetic parameter related to glass-forming abilities of rapidly solidified Cu56Zr44 alloys. Acta Physica Sinica, 2016, 65(6): 066401. doi: 10.7498/aps.65.066401
    [12] Lin Sheng-Jun, Huang Yin, Xie Dong-Ri, Min Dao-Min, Wang Wei-Wang, Yang Liu-Qing, Li Sheng-Tao. Molecular relaxation and glass transition properties of epoxy resin at high temperature. Acta Physica Sinica, 2016, 65(7): 077701. doi: 10.7498/aps.65.077701
    [13] Wu Fei-Fei, Yu Peng, Bian Xi-Lei, Tan Jun, Wang Jian-Guo, Wang Gang. Correlation between fracture mechanism and fracture toughness in metallic glasses. Acta Physica Sinica, 2014, 63(5): 058101. doi: 10.7498/aps.63.058101
    [14] Yu Yu-Ying, Xi Feng, Dai Cheng-Da, Cai Ling-Cang, Tan Hua, Li Xue-Mei, Hu Chang-Ming. Plastic behavior of Zr51Ti5Ni10Cu25Al9 metallic glass under planar shock loading. Acta Physica Sinica, 2012, 61(19): 196202. doi: 10.7498/aps.61.196202
    [15] Han Guang, Qiang Jian-Bing, Wang Qing, Wang Ying-Min, Xia Jun-Hai, Zhu Chun-Lei, Quan Shi-Guang, Dong Chuang. Electrochemical potential equilibrium of electrons in ideal metallic glasses based on the cluster-resonance model. Acta Physica Sinica, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [16] Chen Yan, Jiang Min-Qiang, Dai Lan-Hong. Temperature-dependent yield asymmetry between tension and compression in metallic glasses. Acta Physica Sinica, 2012, 61(3): 036201. doi: 10.7498/aps.61.036201
    [17] Li Mei-Li, Fu Xing-Ye, Sun Hong-Ning, Zhao Hong-An, Li Cong, Duan Yong-Ping, Yan Yuan, Sun Min-Hua. Molecular dynamics investigation of the glass transition at high-pressure in the phase separation liquid. Acta Physica Sinica, 2009, 58(8): 5604-5609. doi: 10.7498/aps.58.5604
    [18] Zhang Li-Li, Zhang Jin-Lu, Jiang Jian-Guo, Zhou Heng-Wei, Huang Yi-Neng. Modeling the inter-molecular orientational correlation in orientational glassformers and the simulation analysis. Acta Physica Sinica, 2008, 57(9): 5817-5822. doi: 10.7498/aps.57.5817
    [19] Zhai Qiu-Ya, Yang Yang, Xu Jin-Feng, Guo Xue-Feng. Electrical resistivity and mechanical properties of rapidly solidified Cu-Sn hypoperitectic alloys. Acta Physica Sinica, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [20] Tong Cun-Zhu, Zheng Pjing, Bai Hai-Yang, Chen Zhao-Jia, Luo Jian-Lin, Zhang Jie, Lin De-Hua, Wang Wei-Hua. . Acta Physica Sinica, 2002, 51(7): 1559-1563. doi: 10.7498/aps.51.1559
Metrics
  • Abstract views:  8044
  • PDF Downloads:  564
  • Cited By: 0
Publishing process
  • Received Date:  13 October 2011
  • Accepted Date:  12 November 2011
  • Published Online:  05 July 2012

/

返回文章
返回
Baidu
map