-
H bridge inverter is a basic nonlinear topology in power electronic circuits. However it is prone to the generation of fast-scale instability phenomenon due to the variation of some parameters in the operation process, which can be eliminated with the slope compensation simply and effectively. Experience plays the leading role and common engineering design is lacking in necessary design criteria. Accrording to the bifurcation control theory of nonlinear system, in this paper we analyze the implementation of slope compensation on H bridge inverter under peak current mode control in detail, thereby obtaining the accurate amplitude requirements of the compensated slope signal and realize the optimization. The results of the analysis are consistent with those of simulation experiment, and the inverter circuit under appropriate slope compensation can operate in stable regime especially with the performances being enhanced remarkably. The research method is also applicable for the stability analysis of other power electronic circuits.
[1] Deane J H B, Hamill D C 1990 IEEE Trans. Power Electron. 5 260
[2] [3] Wang F Q, Ma X K, Yan Y 2011 Acta Phys. Sin. 60 060510 (in Chinese) [王发强, 马西奎, 闫晔 2011 60 060510]
[4] Zhou Y F, Chen J N, Xu C 2005 Proc. CSEE 25 30 (in Chinese) [周宇飞, 陈军宁, 徐超 2005 中国电机工程学报 25 30]
[5] [6] Ma X K, Liu W Z, Zhang H 2005 Proc. CSEE 25 61 (in Chinese) [马西奎, 刘伟增, 张浩 2005 中国电机工程学报 25 61]
[7] [8] [9] Robert B, Robert C 2002 Int. J. Contr. 75 1356
[10] [11] Iu H H C, Robert B 2003 IEEE Trans. Circuits Syst. I 50 1125
[12] [13] Wang X M, Zhang B, Qiu D Y 2009 Acta Phys. Sin. 58 2248 (in Chinese) [王学梅, 张波, 丘东元 2009 58 2248]
[14] Lei B, Xiao G C, Wu X L, Qi Y R 2011 Acta Phys. Sin. 60 090501 (in Chinese) [雷博, 肖国春, 吴旋律, 齐元瑞 2011 60 090501]
[15] [16] [17] Xu D H, Ma H, Wang Y S 2006 Power Electronics (Beijing: Science Press) p180 (in Chinese) [徐德鸿, 马皓, 汪槱生 2006 电力电子技术 (北京: 科学出版社) 第180页]
[18] Zhao Y B, Zhang C J, Zhang D Y 2007 Chin. Phys. 16 933
[19] [20] [21] Poddar G, Chakrabarty K, Banerjee S 1995 Electronics Letters 31 841
[22] Zhou Y F, Tse C K, Qiu S S, Chen J N 2005 Chin. Phys. 14 61
[23] [24] [25] Zhou Y F, Chen J N, Tse C K, Ke D M, Shi L X, Sun W F 2004 Acta Phys. Sin. 53 3676 (in Chinese) [周宇飞, 陈军宁, 谢智刚, 柯导明, 时龙兴, 孙伟锋 2004 53 3676]
[26] [27] Zhou Y, Jiang X, Chen J 2008 Sci. China Ser. F-Inf Sci. 51 2135
[28] Tse C K, Lai Y M 2001 Latin American Applied Research 31 177
[29] -
[1] Deane J H B, Hamill D C 1990 IEEE Trans. Power Electron. 5 260
[2] [3] Wang F Q, Ma X K, Yan Y 2011 Acta Phys. Sin. 60 060510 (in Chinese) [王发强, 马西奎, 闫晔 2011 60 060510]
[4] Zhou Y F, Chen J N, Xu C 2005 Proc. CSEE 25 30 (in Chinese) [周宇飞, 陈军宁, 徐超 2005 中国电机工程学报 25 30]
[5] [6] Ma X K, Liu W Z, Zhang H 2005 Proc. CSEE 25 61 (in Chinese) [马西奎, 刘伟增, 张浩 2005 中国电机工程学报 25 61]
[7] [8] [9] Robert B, Robert C 2002 Int. J. Contr. 75 1356
[10] [11] Iu H H C, Robert B 2003 IEEE Trans. Circuits Syst. I 50 1125
[12] [13] Wang X M, Zhang B, Qiu D Y 2009 Acta Phys. Sin. 58 2248 (in Chinese) [王学梅, 张波, 丘东元 2009 58 2248]
[14] Lei B, Xiao G C, Wu X L, Qi Y R 2011 Acta Phys. Sin. 60 090501 (in Chinese) [雷博, 肖国春, 吴旋律, 齐元瑞 2011 60 090501]
[15] [16] [17] Xu D H, Ma H, Wang Y S 2006 Power Electronics (Beijing: Science Press) p180 (in Chinese) [徐德鸿, 马皓, 汪槱生 2006 电力电子技术 (北京: 科学出版社) 第180页]
[18] Zhao Y B, Zhang C J, Zhang D Y 2007 Chin. Phys. 16 933
[19] [20] [21] Poddar G, Chakrabarty K, Banerjee S 1995 Electronics Letters 31 841
[22] Zhou Y F, Tse C K, Qiu S S, Chen J N 2005 Chin. Phys. 14 61
[23] [24] [25] Zhou Y F, Chen J N, Tse C K, Ke D M, Shi L X, Sun W F 2004 Acta Phys. Sin. 53 3676 (in Chinese) [周宇飞, 陈军宁, 谢智刚, 柯导明, 时龙兴, 孙伟锋 2004 53 3676]
[26] [27] Zhou Y, Jiang X, Chen J 2008 Sci. China Ser. F-Inf Sci. 51 2135
[28] Tse C K, Lai Y M 2001 Latin American Applied Research 31 177
[29]
Catalog
Metrics
- Abstract views: 7377
- PDF Downloads: 828
- Cited By: 0