Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A chaos control method of single-phase H-bridge photovoltaic inverter

Gong Ren-Xi Yin Zhi-Hong

Citation:

A chaos control method of single-phase H-bridge photovoltaic inverter

Gong Ren-Xi, Yin Zhi-Hong
PDF
HTML
Get Citation
  • There are complex nonlinear behaviors such as bifurcation and chaos in a single-phase H-bridge photovoltaic inverter under proportional integral control, which will increase the harmonic content of the output current greatly and reduce the stability of system operation and reliability of power supply. There are the problems suffering the complicated modeling and difficulty in determining the control coefficients in existing chaos control methods. The exponential delay feedback control is a further development of the delay feedback control, which has the advantages of requiring no precise mathematical model of the system and simple implementation. However, our research shows that when the exponential delay feedback control is directly applied to the system, the feedback intensity cannot be controlled, which will bring too big a disturbance to the system. Based on it, an improved exponential delayed feedback control method is proposed in this paper. Firstly, a feedback signal is formed by the difference between the output current of the system and its own delay, then the feedback signal is used to obtain the control signal through an exponential link, a subtraction link and an proportion link, and the control signal is applied to the controlled system in the form of a feedback. At the same time, the discrete mapping model of the system is established and its Jacobian matrix expression is determined. Finally, the limiting conditions of the feedback control coefficient of the control signal are derived based on the stability criterion, and the control is applied to the system. In order to verify the control effect of this method, a lot of simulation experiments are conducted. The results show that the problems that the exponential delay feedback cannot control the feedback strength and causes excessive disturbance to the system will be effectively solved by this method. When the bifurcation parameters vary greatly, the chaos behaviors in the system will be suppressed effectively, the stable operating domain of the system will be expanded greatly and the harmonic content of the output current will be reduced.
      Corresponding author: Gong Ren-Xi, rxgong@gxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61561007) and the Natural Science Foundation of Guangxi Province, China (Grant No. 2017GXNSFAA198168)
    [1]

    谢玲玲, 龚仁喜, 卓浩泽, 马献花 2012 61 058401Google Scholar

    Xie L L, Gong R X, Zhuo H Z, Ma X H 2012 Acta Phys. Sin. 61 058401Google Scholar

    [2]

    Zhusubaliyev Z T, Mosekilde E, Yanochkina O O 2011 IEEE Trans. Power Electron. 26 1270Google Scholar

    [3]

    Kapat S 2019 IEEE Trans. Circuits Syst. Express Briefs 66 1048Google Scholar

    [4]

    Ma W, Wang L, Zhang R, Li J H, Dong Z M, Zhang Y H, Hu M, Liu S X 2019 IEEE Trans. Circuits Syst. Express Briefs 66 1411Google Scholar

    [5]

    Xie F, Yang R, Zhang B 2011 IEEE Trans. Circuits Syst. Regul. Pap. 58 2269Google Scholar

    [6]

    Han Y, Fang X, Yang P, Wang C L, Xu L, Guerrero J M 2018 IEEE Trans. Power Electron. 33 6333Google Scholar

    [7]

    Dasgupta S, Sahoo S K, Panda S K 2011 IEEE Trans. Power Electron. 26 717Google Scholar

    [8]

    Zhang H, Ding H H, Yi C Z 2017 Int. J. Bifurcation Chaos 27 1750086Google Scholar

    [9]

    Lei B, Xiao G C, Wu X L, Kafle Y R, Zheng L F 2014 Int. J. Bifurcation Chaos 24 1450002Google Scholar

    [10]

    Tong Y N, Li C L, Zhou F 2016 Optik 127 1724Google Scholar

    [11]

    Li M, Dai D, Ma X K 2008 Circuits Syst. Signal Process. 27 811Google Scholar

    [12]

    Liu W, Wang F Q, Ma X K 2016 Int. J. Bifurcation Chao. 26 1650200Google Scholar

    [13]

    Avrutin V, Mosekilde E, Zhusubaliyev Z T, Gardini L 2015 Chao. 25 043114Google Scholar

    [14]

    Robert B, Robert C 2002 Int. J. Control. 75 1356Google Scholar

    [15]

    Asahara H, Kousaka T 2011 Int. J. Bifurcation Chaos 21 985Google Scholar

    [16]

    Yang F, Yang L H, Ma X K 2016 Int. J. Bifurcation Chaos 26 1650199Google Scholar

    [17]

    Hsieh F H, Wang H K, Chang P L, Chen Y S, Yang Y K 2009 Int. J. Innov. Comput. Inf. Control. 5 4647

    [18]

    Yang L H, Yang L, Yang F, Ma X K 2020 Int. J. Bifurcation Chaos 30 2050005Google Scholar

    [19]

    刘洪臣, 李飞, 杨爽 2013 62 110504Google Scholar

    Liu H C, Li F, Yang S, 2013 Acta Phys. Sin. 62 110504Google Scholar

    [20]

    刘洪臣, 杨爽 2013 62 210502Google Scholar

    Liu H C, Yang S, 2013 Acta Phys. Sin. 62 210502Google Scholar

    [21]

    Iu H H C, Robert B 2003 IEEE Trans. Circuits Syst. I -Fundam. Theor. Appl. 50 1125Google Scholar

    [22]

    Feki A, Robert B, Iu H H C 2004 35th Annual IEEE Power Electronics Specialists Conference Aachen Germany, 20−25 June 2004, p3317

    [23]

    Lu W G, Zhao N K, Wu J K, Aroudi E A, Zhou L W 2015 Int. J. Circuit Theory Appl. 43 866Google Scholar

    [24]

    Nakajima H, Ueda Y 1998 Physica D 111 143Google Scholar

  • 图 1  PI调节单相H桥光伏逆变器控制系统 (a)引入EDFC系统原理图; (b) 引入IEDFC系统原理图

    Figure 1.  PI regulating single-phase H-bridge photovoltaic inverter control system: (a) System schematic diagram with EDFC applied; (b) system schematic diagram with IEDFC applied

    图 2  未引入混沌控制时电感电流峰值处分岔图(n = 100+400k, k = 1, 2, 3, ···) (a) kp为分岔参数时分岔图; (b) E为分岔参数时分岔图

    Figure 2.  Bifurcation diagram with inductance current at peak value without chaos control (n = 100+ 400k, k = 1, 2, 3, ···): (a) Bifurcation diagram with kp as bifurcation parameter; (b) bifurcation diagram with E as bifurcation parameter.

    图 3  未引入混沌控制时特征值轨迹图 (a) kp从0.6增大到2; (b) E从200 V增大到600 V

    Figure 3.  Eigenvalue trajectory without chaos control: (a) kp increasing from 0.6 to 2; (b) E increasing from 200 V to 600 V.

    图 4  引入EDFC后电感电流峰值处分岔图 (n = 100+400k, k = 1, 2, 3, ···) (a) kp为分岔参数时分岔图; (b) E为分岔参数时分岔图

    Figure 4.  Bifurcation diagram with inductance current at peak value with EDFC applied (n = 100+ 400k, k = 1, 2, 3···): (a) Bifurcation diagram with kp as bifurcation parameter; (b) bifurcation diagram with E as bifurcation parameter

    图 5  引入EDFC后特征值轨迹图 (a) kp从0.6增大到2.0; (b) E从200 V增大到600 V

    Figure 5.  Eigenvalue trajectory with EDFC applied: (a) with kp increasing from 0.6 to 2.0; (b) with E increasing from 200 V to 600 V.

    图 6  引入IEDFC后电感电流峰值处分岔图 (n = 100+400k, k = 1, 2, 3, ···) (a) 以kp为分岔参数时分岔图; (b) 以E为分岔参数时分岔图

    Figure 6.  Bifurcation diagram with inductance current at peak value with IEDFC applied (n = 100+400k, k = 1, 2, 3, ···): (a) Bifurcation diagram with kp as bifurcation parameter; (b) bifurcation diagram with E as bifurcation parameter

    图 7  引入IEDFC后特征值轨迹图 (a) kp从0.6增大至2.0; (b) E从200 V增大至600 V

    Figure 7.  Eigenvalue trajectory with IEDFC applied: (a) with kp increasing from 0.6 to 2.0; (b) with E increasing from 200 V to 600 V.

    图 8  未引入混沌控制时的电感电流 (a) 时域波形图; (b) 非线性失真系数

    Figure 8.  Inductor current without chaos control: (a) Time domain waveform; (b) THD obtained by FFT.

    图 9  引入EDFC后的电感电流 (a) 时域波形图; (b) 非线性失真系数

    Figure 9.  Inductor current with EDFC applied: (a) Time domain waveform; (b) THD obtained by FFT.

    图 10  引入IEDFC后的电感电流 (a) 时域波形图; (b) 非线性失真系数

    Figure 10.  Inductor current with IEDFC applied: (a) Time domain waveform; (b) THD obtained by FFT.

    图 11  kp = 1.400时, 引入EDFC后电感电流 (a) 时域波形图; (b) 时域波形局部放大图

    Figure 11.  Inductor current with EDFC applied for kp = 1.400: (a) Time domain waveform; (b) local magnification diagram of time-domain waveform.

    图 12  kp = 1.400, k1 = 0.707, k2 = 0.630时, 引入IEDFC后电感电流 (a) 时域波形图; (b) 时域波形局部放大图

    Figure 12.  Inductor current with IEDFC applied for kp = 1.400, k1 = 0.707, k2 = 0.630: (a) Time domain waveform; (b) local magnification diagram of time-domain waveform.

    图 13  kp = 1.4, t = 0.06 s时, 引入其他混沌控制后电感电流 (a) 引入时间延迟反馈控制后; (b) 引入扩展时间延迟反馈控制后; (c) 引入基于滤波器的混沌控制后

    Figure 13.  Inductor current with other chaos control applied for kp = 1.4, t = 0.06 s: (a) With time-delay feedback control applied; (b) with extended time-delay feedback control applied; (c) with chaos control based on filter applied.

    图 14  引入EDFC后电感电流时域波形图

    Figure 14.  Time domain waveform with EDFC applied.

    图 15  引入IEDFC后电感电流时域波形图

    Figure 15.  Time domain waveform with IEDFC applied.

    表 1  电路参数设定值

    Table 1.  Set values of circuit parameters.

    电路参数取值电路参数取值
    直流侧输入电压E/V250载波itri的最大值1
    电感L/mH7载波itri的最小值–1
    电阻R20积分控制系数ki180
    给定参考电流幅值
    irefm/A
    5开关频率fs/kHz20
    载波itri的周期T/μs50调制信号icon
    周期Ts/s
    0.02
    DownLoad: CSV
    Baidu
  • [1]

    谢玲玲, 龚仁喜, 卓浩泽, 马献花 2012 61 058401Google Scholar

    Xie L L, Gong R X, Zhuo H Z, Ma X H 2012 Acta Phys. Sin. 61 058401Google Scholar

    [2]

    Zhusubaliyev Z T, Mosekilde E, Yanochkina O O 2011 IEEE Trans. Power Electron. 26 1270Google Scholar

    [3]

    Kapat S 2019 IEEE Trans. Circuits Syst. Express Briefs 66 1048Google Scholar

    [4]

    Ma W, Wang L, Zhang R, Li J H, Dong Z M, Zhang Y H, Hu M, Liu S X 2019 IEEE Trans. Circuits Syst. Express Briefs 66 1411Google Scholar

    [5]

    Xie F, Yang R, Zhang B 2011 IEEE Trans. Circuits Syst. Regul. Pap. 58 2269Google Scholar

    [6]

    Han Y, Fang X, Yang P, Wang C L, Xu L, Guerrero J M 2018 IEEE Trans. Power Electron. 33 6333Google Scholar

    [7]

    Dasgupta S, Sahoo S K, Panda S K 2011 IEEE Trans. Power Electron. 26 717Google Scholar

    [8]

    Zhang H, Ding H H, Yi C Z 2017 Int. J. Bifurcation Chaos 27 1750086Google Scholar

    [9]

    Lei B, Xiao G C, Wu X L, Kafle Y R, Zheng L F 2014 Int. J. Bifurcation Chaos 24 1450002Google Scholar

    [10]

    Tong Y N, Li C L, Zhou F 2016 Optik 127 1724Google Scholar

    [11]

    Li M, Dai D, Ma X K 2008 Circuits Syst. Signal Process. 27 811Google Scholar

    [12]

    Liu W, Wang F Q, Ma X K 2016 Int. J. Bifurcation Chao. 26 1650200Google Scholar

    [13]

    Avrutin V, Mosekilde E, Zhusubaliyev Z T, Gardini L 2015 Chao. 25 043114Google Scholar

    [14]

    Robert B, Robert C 2002 Int. J. Control. 75 1356Google Scholar

    [15]

    Asahara H, Kousaka T 2011 Int. J. Bifurcation Chaos 21 985Google Scholar

    [16]

    Yang F, Yang L H, Ma X K 2016 Int. J. Bifurcation Chaos 26 1650199Google Scholar

    [17]

    Hsieh F H, Wang H K, Chang P L, Chen Y S, Yang Y K 2009 Int. J. Innov. Comput. Inf. Control. 5 4647

    [18]

    Yang L H, Yang L, Yang F, Ma X K 2020 Int. J. Bifurcation Chaos 30 2050005Google Scholar

    [19]

    刘洪臣, 李飞, 杨爽 2013 62 110504Google Scholar

    Liu H C, Li F, Yang S, 2013 Acta Phys. Sin. 62 110504Google Scholar

    [20]

    刘洪臣, 杨爽 2013 62 210502Google Scholar

    Liu H C, Yang S, 2013 Acta Phys. Sin. 62 210502Google Scholar

    [21]

    Iu H H C, Robert B 2003 IEEE Trans. Circuits Syst. I -Fundam. Theor. Appl. 50 1125Google Scholar

    [22]

    Feki A, Robert B, Iu H H C 2004 35th Annual IEEE Power Electronics Specialists Conference Aachen Germany, 20−25 June 2004, p3317

    [23]

    Lu W G, Zhao N K, Wu J K, Aroudi E A, Zhou L W 2015 Int. J. Circuit Theory Appl. 43 866Google Scholar

    [24]

    Nakajima H, Ueda Y 1998 Physica D 111 143Google Scholar

  • [1] Yang Yi-Fei, Luo Min-Zhou, Xing Shao-Bang, Han Xiao-Xin, Zhu Huang-Qiu. Analysis of chaos in permanent magnet synchronous generator and optimal output feedback H∞ control. Acta Physica Sinica, 2015, 64(4): 040504. doi: 10.7498/aps.64.040504
    [2] Qin Li, Liu Fu-Cai, Liang Li-Huan, Hou Tian-Tian. H∞ control for spacecraft chaotic attitude motion by liquid sloshing disturbance observer. Acta Physica Sinica, 2014, 63(9): 090502. doi: 10.7498/aps.63.090502
    [3] Wang Yue-Gang, Wen Chao-Bin, Yang Jia-Sheng, Zuo Zhao-Yang, Cui Xiang-Xiang. Adaptive control of chaotic systems based on model free method. Acta Physica Sinica, 2013, 62(10): 100504. doi: 10.7498/aps.62.100504
    [4] Zhang Xu-Dong, Zhu Ping, Xie Xiao-Ping, He Guo-Guang. A dynamic threshold value control method for chaotic neural networks. Acta Physica Sinica, 2013, 62(21): 210506. doi: 10.7498/aps.62.210506
    [5] Ren Li-Na, Liu Fu-Cai, Jiao Xiao-Hong, Li Jun-Yi. Hamiltonian model-based H control of chaos in permanent magnet synchronous generators for wind power systems. Acta Physica Sinica, 2012, 61(6): 060506. doi: 10.7498/aps.61.060506
    [6] Zhu Shao-Ping, Qian Fu-Cai, Liu Ding. Optimal control for uncertainty dynamic chaotic systems. Acta Physica Sinica, 2010, 59(4): 2250-2255. doi: 10.7498/aps.59.2250
    [7] Liu Chong-Xin, Zhai Du-Qing, Dong Zi-Han, Liu Yao. Control and analysis of a third-order nonautonomous ferroresonance chaotic circuit with a transformer. Acta Physica Sinica, 2010, 59(6): 3733-3739. doi: 10.7498/aps.59.3733
    [8] Li Dong, Zhang Xiao-Hong, Yang Dan, Wang Shi-Long. Fuzzy control of chaos in permanent magnet synchronous motor with parameter uncertainties. Acta Physica Sinica, 2009, 58(3): 1432-1440. doi: 10.7498/aps.58.1432
    [9] Gao Ji-Hua, Xie Ling-Ling, Peng Jian-Hua. Controlling spatiotemporal chaos by speed feedback method. Acta Physica Sinica, 2009, 58(8): 5218-5223. doi: 10.7498/aps.58.5218
    [10] Shen Qi-Kun, Zhang Tian-Ping, Sun Yan. Adaptive chaos control with dead-zone and saturating input. Acta Physica Sinica, 2007, 56(11): 6263-6269. doi: 10.7498/aps.56.6263
    [11] Zhang Ying, Xu Wei, Sun Xiao-Juan, Fang Tong. Stochastic chaos and its control in the stochastic Bonhoeffer-Van der Pol system. Acta Physica Sinica, 2007, 56(10): 5665-5673. doi: 10.7498/aps.56.5665
    [12] Gao Xin, Liu Xing-Wen. Delayed fuzzy control of a unified chaotic system. Acta Physica Sinica, 2007, 56(1): 84-90. doi: 10.7498/aps.56.84
    [13] Lu Wei-Guo, Zhou Luo-Wei, Luo Quan-Ming. Output time-delay feedback control of chaos in the voltage-mode BUCK converter. Acta Physica Sinica, 2007, 56(10): 5648-5654. doi: 10.7498/aps.56.5648
    [14] Yu Hong-Jie, Zheng Ning. Controlling chaos using half period delay-nonlinear feedback. Acta Physica Sinica, 2007, 56(7): 3782-3788. doi: 10.7498/aps.56.3782
    [15] Lu Wei-Guo, Zhou Luo-Wei, Luo Quan-Ming, Du Xiong. Time-delayed feedback control of chaos in BOOST converter and its optimization. Acta Physica Sinica, 2007, 56(11): 6275-6281. doi: 10.7498/aps.56.6275
    [16] Zhou Xiao-An, Qian Gong-Bin, Qiu Shui-Sheng. Chaotic control of nonlinear systems based on improving the space correlation. Acta Physica Sinica, 2006, 55(8): 3974-3978. doi: 10.7498/aps.55.3974
    [17] Li Shuang, Xu Wei, Li Rui-Hong. Chaos control of Duffing systems by random phase. Acta Physica Sinica, 2006, 55(3): 1049-1054. doi: 10.7498/aps.55.1049
    [18] Gong Li-Hua. Study of chaos control based on adaptive pulse perturbation. Acta Physica Sinica, 2005, 54(8): 3502-3507. doi: 10.7498/aps.54.3502
    [19] Liu Han, Liu Ding, Ren Hai-Peng. Chaos control based on least square support vector machines. Acta Physica Sinica, 2005, 54(9): 4019-4025. doi: 10.7498/aps.54.4019
    [20] Yu Hong-Jie. Controlling chaos using time-delay nonlinear feedback. Acta Physica Sinica, 2005, 54(11): 5053-5057. doi: 10.7498/aps.54.5053
Metrics
  • Abstract views:  5393
  • PDF Downloads:  100
  • Cited By: 0
Publishing process
  • Received Date:  26 June 2020
  • Accepted Date:  13 August 2020
  • Available Online:  11 January 2021
  • Published Online:  20 January 2021

/

返回文章
返回
Baidu
map