-
The dynamical properties of quantum spin systems have received a great deal of theoretical and experimental attention in the past decades. Only recently, has much attention been paid to the random quantum spin systems. In this paper the effect of random external field on the dynamics of one-dimensional Blume-Capel model with s = 1 in the high-temperature limit is investigated by using the recurrence relations method. The spin autocorrelation function as well as the corresponding spectral density of the system is calculated in the presence of the field that satisfies two types of distributions. When the single-ion anisotropy takes 0, for the bimodal distribution, the dynamics of the system behaves as a crossover from a central peak behavior to a collective mode one. For the Gaussian distribution, when the standard deviation is small, the dynamical behavior of the system also exhibits a crossover; when the standard deviation is large enough, the system only shows a disordered behavior. We also discuss the effect of the single-ion anisotropy on the dynamical property of the system, and find that the collective-mode behavior becomes weaker as the single-ion anisotropy exists.
-
Keywords:
- correlation function /
- spectral density /
- Blume-Capel model /
- random fields
[1] Blume M 1966 Phys. Rev. 141 517
[2] Capel H W 1967 Physica 33 295
[3] Ekiz C, Keskin M 2003 Physica A 317 517
[4] Kornis G, Rikvold P A, Novotny M A 2002 Phys. Rev. E 66 056127
[5] Buendia G M, Hurtado N 2000 Phys. Status Solidi B 220 959
[6] Deviren S A, Albayrak E 2011 Physica A 390 3283
[7] Bohm M, Leschke H 1993 Physica A 199 116
[8] Barreto F C S 1994 Braz. J. Phys. 24 819
[9] Florencio J, Barreto F C S 1999 Phys. Rev. B 60 9555
[10] Boechat B, Cordeiro C, Florencio J, Barreto F C S, Bonfim O F A 2000 Braz. J. Phys. 30 693
[11] Boechat B, Cordeiro C, Florencio J, Barreto F C S, Bonfim O F A 2000 Phys. Rev. B 61 14327
[12] Boechat B, Cordeiro C, Bonfim O F A, Florencio J, Barreto F C S 2000 J. Phys. Soc. Jpn. 30 693
[13] Nunes M E S, Florencio J 2003 Phys. Rev. B 68 014406
[14] Liu Z Q, Kong X M, Chen X S 2006 Phys. Rev. B 73 224412
[15] Xu L, Yan S L 2007 Acta Phys. Sin. 56 1691 (in Chinese) [许玲, 晏世雷 2007 56 1691]
[16] Xu Z B, Kong X M, Liu Z Q 2008 Phys. Rev. B 77 184414
[17] Yuan X J, Zhao B Y, Chen S X, Kong X M 2010 Acta Phys. Sin. 59 1499 (in Chinese) [袁晓娟, 赵邦宇, 陈淑霞, 孔祥木 2010 59 1499]
[18] Yuan X J, Kong X M, Xu Z B, Liu Z Q 2010 Physica A 389 242
[19] Chen S X, Shen Y Y, Kong X M 2010 Phys. Rev. B 82 174404
[20] Lee M H 2000 Phys. Rev. E 62 1769
[21] Lee M H 1982 Phys. Rev. B 26 2547
[22] Lee M H 1982 Phys. Rev. Lett. 49 1072
-
[1] Blume M 1966 Phys. Rev. 141 517
[2] Capel H W 1967 Physica 33 295
[3] Ekiz C, Keskin M 2003 Physica A 317 517
[4] Kornis G, Rikvold P A, Novotny M A 2002 Phys. Rev. E 66 056127
[5] Buendia G M, Hurtado N 2000 Phys. Status Solidi B 220 959
[6] Deviren S A, Albayrak E 2011 Physica A 390 3283
[7] Bohm M, Leschke H 1993 Physica A 199 116
[8] Barreto F C S 1994 Braz. J. Phys. 24 819
[9] Florencio J, Barreto F C S 1999 Phys. Rev. B 60 9555
[10] Boechat B, Cordeiro C, Florencio J, Barreto F C S, Bonfim O F A 2000 Braz. J. Phys. 30 693
[11] Boechat B, Cordeiro C, Florencio J, Barreto F C S, Bonfim O F A 2000 Phys. Rev. B 61 14327
[12] Boechat B, Cordeiro C, Bonfim O F A, Florencio J, Barreto F C S 2000 J. Phys. Soc. Jpn. 30 693
[13] Nunes M E S, Florencio J 2003 Phys. Rev. B 68 014406
[14] Liu Z Q, Kong X M, Chen X S 2006 Phys. Rev. B 73 224412
[15] Xu L, Yan S L 2007 Acta Phys. Sin. 56 1691 (in Chinese) [许玲, 晏世雷 2007 56 1691]
[16] Xu Z B, Kong X M, Liu Z Q 2008 Phys. Rev. B 77 184414
[17] Yuan X J, Zhao B Y, Chen S X, Kong X M 2010 Acta Phys. Sin. 59 1499 (in Chinese) [袁晓娟, 赵邦宇, 陈淑霞, 孔祥木 2010 59 1499]
[18] Yuan X J, Kong X M, Xu Z B, Liu Z Q 2010 Physica A 389 242
[19] Chen S X, Shen Y Y, Kong X M 2010 Phys. Rev. B 82 174404
[20] Lee M H 2000 Phys. Rev. E 62 1769
[21] Lee M H 1982 Phys. Rev. B 26 2547
[22] Lee M H 1982 Phys. Rev. Lett. 49 1072
Catalog
Metrics
- Abstract views: 6914
- PDF Downloads: 649
- Cited By: 0