-
Point defects are implanted in an ordered granular system by randomly selecting granules and changing their stiffness coefficients. The discrete element method is used to research the normal force probability distribution. Simulation result shows that force network is almost homogeneous without defects whereas force network will become inhomogeneous with defects. The concepts of primary normal force and secondary normal force are proposed and their statistics are analyzed separately. As the rate of defects increases, the changing process of primary normal force distribution is complex, whereas the secondary normal force distribution is always exponential distribution. Our simulation shows that normal force distributions are different between randomly packing system and compositional disordered system of low defect rate. But when defect rate is large, the distributions are similar. These results are beneficial to the understanding of the relationship between inhomogeneous force network and disordered system.
-
Keywords:
- static granular system /
- discrete element method simulations /
- disordered systems /
- force distribution
[1] Kittel C 2005 Introduction to Solid State Physics (New York: John Wiley &Sons Inc.)
[2] Lu K Q, Liu J X 2004 Physics 33 629 (in Chinese) [陆坤权, 刘寄星 2004 物理 33 629]
[3] Liu C, Nagel S R, Schecter D A, Coppersmith S N, Majumdar S, Narayan O, Witten T A 1995 Science 269 513
[4] Mueth D M, Jaeger H M, Nagel S R 1998 Phys. Rev. E 57 3164
[5] Majmudar T S, Behringer R P 2005 Nature 435 1079
[6] Coppersmith S N, Liu C, Majumdar S, Narayan O, Witten T 1996 Phys. Rev. E 53 4673
[7] Socolar J E S 1998 Phys. Rev. E 57 3204
[8] Snoeijer J H, Vlugt T J H, Ellenbroek W G, Hecke M, Leeuwen J M J 2004 Phys. Rev. Lett. 92 054302
[9] Eerd A R T, Ellenbroek W G, Hecke M, Snoeijer J H, Vlugt T J H 2007 Phys. Rev. E 75 060302
[10] Zhang X G, Long Z W, Hu L 2009 Acta Phys. Sin. 58 92 (in Chinese) [张兴刚, 隆正文, 胡林 2009 58 92]
[11] Radjai F, Jean M, Moreau J J, Roux S 1996 Phys. Rev. Lett. 77 274
[12] Yi C H, Mu Q S, Miao T D 2008 Acta Phys. Sin. 57 3636 (in Chinese) [宜晨虹, 慕青松, 苗天德 2008 57 3636]
[13] Sun Q C, Wang G Q 2008 Acta Phys. Sin. 57 4667 (in Chinese) [孙其诚, 王光谦 2008 57 4667]
[14] Yi C H, Mu Q S, Miao T D 2009 Acta Phys. Sin. 58 7750 (in Chinese) [宜晨虹, 慕青松, 苗天德 2009 58 7750]
[15] Cundall P A, Strack O D L 1979 Geotechnique 29 47
[16] Zhang X G, Hu L, Long Z W 2006 Chin. J. Comput. Phys. 23 642 (in Chinese) [张兴刚, 胡林, 隆正文 2006 计算物理 23 642]
-
[1] Kittel C 2005 Introduction to Solid State Physics (New York: John Wiley &Sons Inc.)
[2] Lu K Q, Liu J X 2004 Physics 33 629 (in Chinese) [陆坤权, 刘寄星 2004 物理 33 629]
[3] Liu C, Nagel S R, Schecter D A, Coppersmith S N, Majumdar S, Narayan O, Witten T A 1995 Science 269 513
[4] Mueth D M, Jaeger H M, Nagel S R 1998 Phys. Rev. E 57 3164
[5] Majmudar T S, Behringer R P 2005 Nature 435 1079
[6] Coppersmith S N, Liu C, Majumdar S, Narayan O, Witten T 1996 Phys. Rev. E 53 4673
[7] Socolar J E S 1998 Phys. Rev. E 57 3204
[8] Snoeijer J H, Vlugt T J H, Ellenbroek W G, Hecke M, Leeuwen J M J 2004 Phys. Rev. Lett. 92 054302
[9] Eerd A R T, Ellenbroek W G, Hecke M, Snoeijer J H, Vlugt T J H 2007 Phys. Rev. E 75 060302
[10] Zhang X G, Long Z W, Hu L 2009 Acta Phys. Sin. 58 92 (in Chinese) [张兴刚, 隆正文, 胡林 2009 58 92]
[11] Radjai F, Jean M, Moreau J J, Roux S 1996 Phys. Rev. Lett. 77 274
[12] Yi C H, Mu Q S, Miao T D 2008 Acta Phys. Sin. 57 3636 (in Chinese) [宜晨虹, 慕青松, 苗天德 2008 57 3636]
[13] Sun Q C, Wang G Q 2008 Acta Phys. Sin. 57 4667 (in Chinese) [孙其诚, 王光谦 2008 57 4667]
[14] Yi C H, Mu Q S, Miao T D 2009 Acta Phys. Sin. 58 7750 (in Chinese) [宜晨虹, 慕青松, 苗天德 2009 58 7750]
[15] Cundall P A, Strack O D L 1979 Geotechnique 29 47
[16] Zhang X G, Hu L, Long Z W 2006 Chin. J. Comput. Phys. 23 642 (in Chinese) [张兴刚, 胡林, 隆正文 2006 计算物理 23 642]
Catalog
Metrics
- Abstract views: 7038
- PDF Downloads: 961
- Cited By: 0