-
The conducting characteristics of two typical electrical trees in cross-linked polyethylene (XLPE) cable insulation are studied by a combination of optical microscopy observation, partial discharge measurement and con-focal Raman spectroscopy analysis. Although they are grown under similar conditions, these two trees display very different shapes. One is a typical branch-pine tree grown at 9 kV, and the other is a branch tree grown at 11 kV. The growth and the partial discharge regularities show obvious differences. The disordered graphitic carbon is condensed in the main tree channels of the branch-pine tree. From the relative intensity of the graphitic carbon G band to D band, the graphitic domain is estimated to be about 8 nm in size. The tree channel resistance per unit length is less than 10 m-1, which is sufficient to prevent the partial discharge from developing within the tree structure. The branch-pine tree shows the features of the conducting tree. The fluorescence background is observed in the channels of branch tree, which shows the existence of the products of the material degradation, but no disordered graphitic carbon is observed in these tree channels. These tree channels display obvious non-conducting characteristics, which is not sufficient to prevent the continuous effect of the partial discharges. Finally, a single channel growth model is proposed for the conducting and non-conducting trees grown in XLPE cable insulation. Based on the equivalent circuit theory, the growth mechanisms of the two trees with different conducting characteristics in XLPE cable insulation are discussed.
-
Keywords:
- cross-linked polyethylene cable /
- electrical tree /
- conducting characteristics /
- con-focal Raman spectroscopy
[1] Dissado L A, Fothergill J C 1992 Electrical Degradation and Breakdown in Polymers (London: Peter Peregrinus)
[2] Li S T, Zheng X Q 2006 Electrical Treeing in Polymer (Beijing: Mechanical Industry Press) (in Chinese) [李盛涛, 郑晓泉 2006 聚合物电树枝化 (北京:机械工业出版社)]
[3] Ishibashi A, Kawai T, Nakagawa S, Muto H, Katakai S, Hirotsu K, Nakatsula T 1998 IEEE Trans. Dielec. Electr. Insul. 5 695
[4] Markey L, Stevens G C 2003 J. Phys. D 36 2569
[5] Boggs S, Densley J, Kuang J 1998 IEEE Trans. Power Delivery 13 310
[6] Zheng X Q, Xie A S, Li S T 2007 Acta Phys. Sin. 56 5494 (in Chinese) [郑晓泉, 谢安生, 李盛涛 2007 56 5494]
[7] Xie A S, Li S T, Zheng X Q 2008 Acta Phys. Sin. 57 3828 (in Chinese) [谢安生, 李盛涛, 郑晓泉 2008 57 3828]
[8] Chen G, Tham C H 2009 IEEE Trans. Dielec. Electr. Insul. 16 179
[9] Zheng X Q, Chen G 2008 IEEE Trans. Dielec. Electr. Insul. 15 800
[10] Chen X R, Xu Y, Xu J, Shi W, Yang W H, Liu Y, Cao X L 2010 High Voltage Eng. 36 2436 (in Chinese) [陈向荣, 徐阳, 徐杰, 史文, 杨文虎, 刘英, 曹晓珑 2010 高电压技术 36 2436]
[11] Champion J V, Dodd S J 2001 J. Phys. D 34 1235
[12] Vaughan A S, Dodd S J, Macdonald A M 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (Nashville: IEEE) p548
[13] Vaughan A S, Hosier I L, Dodd S J, Sutton S J 2006 J. Phys. D 39 962
[14] Zheng X Q, Chen G, Davies A E 2004 Proc. Chin. Soc. Electr. Eng. 24 140 (in Chinese) [郑晓泉, Chen G, Davies A E 2004 中国电机工程学报 24 140]
[15] Chen X R, Xu Y, Cao X L, Dodd S J, Dissado L A 2011 IEEE Trans. Dielec. Electr. Insul. \textbf1{8 847
[16] Ding H Z, Varlow B R 2004 IEEE Electr. Insul. Mag. 20 5
[17] Matthews M J, Pimenta M A, Dresselhaus G, Dresselhaus M S, Endo M 1999 Phys. Rev. B 59 R6585
[18] Fothergill J C 1991 IEEE Trans. Electr. Insul. 26 1124
[19] Dissado L A 2002 IEEE Trans. Dielec. Electr. Insul. 9 483
[20] Wu K, Suzuoki Y, Mizutani T, Xie H K 2000 J. Phys. D 33 1209
[21] Qiu C R, Cao X L 2001 Electrical Insulation Test Technology (Beijing: Mechanical Industry Press) (in Chinese) [邱昌容, 曹晓珑 2001 电气绝缘测试技术 (北京:机械工业出版社)]
[22] Champion J V, Dodd S J, Stevens G C 1994 J. Phys. D 27 1020
-
[1] Dissado L A, Fothergill J C 1992 Electrical Degradation and Breakdown in Polymers (London: Peter Peregrinus)
[2] Li S T, Zheng X Q 2006 Electrical Treeing in Polymer (Beijing: Mechanical Industry Press) (in Chinese) [李盛涛, 郑晓泉 2006 聚合物电树枝化 (北京:机械工业出版社)]
[3] Ishibashi A, Kawai T, Nakagawa S, Muto H, Katakai S, Hirotsu K, Nakatsula T 1998 IEEE Trans. Dielec. Electr. Insul. 5 695
[4] Markey L, Stevens G C 2003 J. Phys. D 36 2569
[5] Boggs S, Densley J, Kuang J 1998 IEEE Trans. Power Delivery 13 310
[6] Zheng X Q, Xie A S, Li S T 2007 Acta Phys. Sin. 56 5494 (in Chinese) [郑晓泉, 谢安生, 李盛涛 2007 56 5494]
[7] Xie A S, Li S T, Zheng X Q 2008 Acta Phys. Sin. 57 3828 (in Chinese) [谢安生, 李盛涛, 郑晓泉 2008 57 3828]
[8] Chen G, Tham C H 2009 IEEE Trans. Dielec. Electr. Insul. 16 179
[9] Zheng X Q, Chen G 2008 IEEE Trans. Dielec. Electr. Insul. 15 800
[10] Chen X R, Xu Y, Xu J, Shi W, Yang W H, Liu Y, Cao X L 2010 High Voltage Eng. 36 2436 (in Chinese) [陈向荣, 徐阳, 徐杰, 史文, 杨文虎, 刘英, 曹晓珑 2010 高电压技术 36 2436]
[11] Champion J V, Dodd S J 2001 J. Phys. D 34 1235
[12] Vaughan A S, Dodd S J, Macdonald A M 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (Nashville: IEEE) p548
[13] Vaughan A S, Hosier I L, Dodd S J, Sutton S J 2006 J. Phys. D 39 962
[14] Zheng X Q, Chen G, Davies A E 2004 Proc. Chin. Soc. Electr. Eng. 24 140 (in Chinese) [郑晓泉, Chen G, Davies A E 2004 中国电机工程学报 24 140]
[15] Chen X R, Xu Y, Cao X L, Dodd S J, Dissado L A 2011 IEEE Trans. Dielec. Electr. Insul. \textbf1{8 847
[16] Ding H Z, Varlow B R 2004 IEEE Electr. Insul. Mag. 20 5
[17] Matthews M J, Pimenta M A, Dresselhaus G, Dresselhaus M S, Endo M 1999 Phys. Rev. B 59 R6585
[18] Fothergill J C 1991 IEEE Trans. Electr. Insul. 26 1124
[19] Dissado L A 2002 IEEE Trans. Dielec. Electr. Insul. 9 483
[20] Wu K, Suzuoki Y, Mizutani T, Xie H K 2000 J. Phys. D 33 1209
[21] Qiu C R, Cao X L 2001 Electrical Insulation Test Technology (Beijing: Mechanical Industry Press) (in Chinese) [邱昌容, 曹晓珑 2001 电气绝缘测试技术 (北京:机械工业出版社)]
[22] Champion J V, Dodd S J, Stevens G C 1994 J. Phys. D 27 1020
Catalog
Metrics
- Abstract views: 8786
- PDF Downloads: 1541
- Cited By: 0