-
The local electric field components of the elliptical gold nanotube are calculated based on the finite difference time domain (FDTD) method. It is find that when the wavelength of the incident light is just at a resonant wavelength, the local field enhancement of the gold nanotube reaches a maximum. The increase of the semiminor axis of the ellipse makes the distribution of the local field change from a distribution that is high in both sides and low in the middle part of the nanotube into a distribution that is uniform around the tube. With the increase of the angle between the incident polarization and the semimajor axis, the local electric field components increase rapidly. The increases of the dielectric constants for both the core and the embedding medium cause the local field around the nanotube to decrease.
-
Keywords:
- localized surface plasmon resonance /
- gold nanotube /
- finite difference time domain /
- local field enhancement
[1] Krenn J R, Dereux A, Weeber J C, Bourillot E, Lacroute Y, Goudonnet J P 1999 Phys. Rev. Lett. 82 2590
[2] Maier S A, Brongersma M L, Kik P G, Meltzer S, Requicha A A G, Atwater H A 2001 Adv. Mater. 13 1501
[3] Quinten M, Leitner A, Krenn J R, Aussenegg F R 1998 Opt. Lett. 23 1331
[4] Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nat. Mater. 2 229
[5] Zhang H X, Gu Y, Gong Q H 2008 Chin. Phys. B 17 2567
[6] Kundu J, Le F, Nordlander P, Halas N J 2008 Chem. Phys. Lett. 452 115
[7] Neuendorf R, Quinten M, Kreibig U 1996 J. Chem. Phys. 104 6348
[8] Bohren C F, Huffman D R 1983 Absorption and scattering of light by small particles (New York: Wiley)
[9] Westcott S L, Jackson J B, Radloff C, Halas N J 2002 Phys. Rev. B 66 155431
[10] Wu D J, Xu X D, Liu X J 2008 J. Chem. Phys. 129 074711
[11] Prodan E, Radloof C, Halas N J, Nordlander P 2003 Science 302 419
[12] Prodan E, Nordlander P, Halas N J 2003 Nano Lett. 3 1411
[13] Schelm S, Smith G B 2005 J. Phys. Chem. B 109 1689
[14] Prodan E, Nordlander P 2004 J. Chem. Phys. 120 5444
[15] Westcott S L, Jackson J B, Radloff C, Halas N J 2002 Phys. Rev. B 66 155431
[16] Averitt R D, Westcott S L, Halas N J 1999 J. Opt. Soc. Am. B 16 1824
[17] Averitt R D, Sarkar D, Halas N J 1997 Phys. Rev. Lett. 78 4217
[18] Wu D J, Liu X J 2008 Acta Phys. Sin. 57 5138 (in Chinese) [吴大建, 刘晓峻 2008 57 5138]
[19] Wu D J, Liu X J 2010 Appl. Phys. Lett. 97, 061904
[20] Wu D J, Liu X J 2010 Appl. Phys. Lett. 96, 151912
[21] Zhu J, Bai S W, Zhao J W, Li J J 2009 Appl. Phys. A 97 431
[22] Leveque G, Martin O J F 2006 Opt. Express 14 9971
[23] Limmer S J, Chou T P, Cao G Z 2003 J. Phys. Chem. B 107 13313
[24] Mock J J, Oldenburg S J, Smith D R, Schultz D A, Schultz S 2002 Nano Lett. 2 465
[25] Hendren W R, Murphy A, Evans P, Connor D, Wurtz G A, Zayats A V, Atkinson R, Pollard R J 2008 J. Phys.: Condens. Matter 20 362203
[26] Cong C, Wu D J, Liu X J 2011 Acta Phys. Sin. 60 046102 (in Chinese) [丛超, 吴大建, 刘晓峻 2011 60 046102]
[27] Wu D J, Liu X J, Li B 2011 J. Appl. Phys. 109 083540
[28] Mock J J, Hill R T, Degiron A, Zauscher S, Chilkoti A, Smith D R 2008 Nano Lett. 8 2245
[29] Wei H, Hao F, Huang Y Z, Wang W Z, Nordlander P, Xu H X 2008 Nano Lett. 8 2497
[30] Brewer S H, Anthireya S J, Lappi S E, Drapcho D L, Franzen S 2002 Langmuir 18 4460
[31] Oldenburg S J, Hale G D, Radloff C, Halas N J 1999 Appl. Phys. Lett. 75 1063
[32] Prodan E, Radloof C, Halas N J, Nordlander P 2003 Science 302 419
[33] Zhu J 2007 Appl. Phys. A 88 673
-
[1] Krenn J R, Dereux A, Weeber J C, Bourillot E, Lacroute Y, Goudonnet J P 1999 Phys. Rev. Lett. 82 2590
[2] Maier S A, Brongersma M L, Kik P G, Meltzer S, Requicha A A G, Atwater H A 2001 Adv. Mater. 13 1501
[3] Quinten M, Leitner A, Krenn J R, Aussenegg F R 1998 Opt. Lett. 23 1331
[4] Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nat. Mater. 2 229
[5] Zhang H X, Gu Y, Gong Q H 2008 Chin. Phys. B 17 2567
[6] Kundu J, Le F, Nordlander P, Halas N J 2008 Chem. Phys. Lett. 452 115
[7] Neuendorf R, Quinten M, Kreibig U 1996 J. Chem. Phys. 104 6348
[8] Bohren C F, Huffman D R 1983 Absorption and scattering of light by small particles (New York: Wiley)
[9] Westcott S L, Jackson J B, Radloff C, Halas N J 2002 Phys. Rev. B 66 155431
[10] Wu D J, Xu X D, Liu X J 2008 J. Chem. Phys. 129 074711
[11] Prodan E, Radloof C, Halas N J, Nordlander P 2003 Science 302 419
[12] Prodan E, Nordlander P, Halas N J 2003 Nano Lett. 3 1411
[13] Schelm S, Smith G B 2005 J. Phys. Chem. B 109 1689
[14] Prodan E, Nordlander P 2004 J. Chem. Phys. 120 5444
[15] Westcott S L, Jackson J B, Radloff C, Halas N J 2002 Phys. Rev. B 66 155431
[16] Averitt R D, Westcott S L, Halas N J 1999 J. Opt. Soc. Am. B 16 1824
[17] Averitt R D, Sarkar D, Halas N J 1997 Phys. Rev. Lett. 78 4217
[18] Wu D J, Liu X J 2008 Acta Phys. Sin. 57 5138 (in Chinese) [吴大建, 刘晓峻 2008 57 5138]
[19] Wu D J, Liu X J 2010 Appl. Phys. Lett. 97, 061904
[20] Wu D J, Liu X J 2010 Appl. Phys. Lett. 96, 151912
[21] Zhu J, Bai S W, Zhao J W, Li J J 2009 Appl. Phys. A 97 431
[22] Leveque G, Martin O J F 2006 Opt. Express 14 9971
[23] Limmer S J, Chou T P, Cao G Z 2003 J. Phys. Chem. B 107 13313
[24] Mock J J, Oldenburg S J, Smith D R, Schultz D A, Schultz S 2002 Nano Lett. 2 465
[25] Hendren W R, Murphy A, Evans P, Connor D, Wurtz G A, Zayats A V, Atkinson R, Pollard R J 2008 J. Phys.: Condens. Matter 20 362203
[26] Cong C, Wu D J, Liu X J 2011 Acta Phys. Sin. 60 046102 (in Chinese) [丛超, 吴大建, 刘晓峻 2011 60 046102]
[27] Wu D J, Liu X J, Li B 2011 J. Appl. Phys. 109 083540
[28] Mock J J, Hill R T, Degiron A, Zauscher S, Chilkoti A, Smith D R 2008 Nano Lett. 8 2245
[29] Wei H, Hao F, Huang Y Z, Wang W Z, Nordlander P, Xu H X 2008 Nano Lett. 8 2497
[30] Brewer S H, Anthireya S J, Lappi S E, Drapcho D L, Franzen S 2002 Langmuir 18 4460
[31] Oldenburg S J, Hale G D, Radloff C, Halas N J 1999 Appl. Phys. Lett. 75 1063
[32] Prodan E, Radloof C, Halas N J, Nordlander P 2003 Science 302 419
[33] Zhu J 2007 Appl. Phys. A 88 673
Catalog
Metrics
- Abstract views: 7309
- PDF Downloads: 527
- Cited By: 0