搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近壁区分子团聚现象的原位红外观测

陈芳英 兰忠 强伟丽 廉士俊 马学虎

引用本文:
Citation:

近壁区分子团聚现象的原位红外观测

陈芳英, 兰忠, 强伟丽, 廉士俊, 马学虎

In-situ infrared observation of molecularclustering near cooled surface

Chen Fang-Ying, Lan Zhong, Qiang Wei-Li, Lian Shi-Jun, Ma Xue-Hu
PDF
HTML
导出引用
  • 对于饱和蒸气壁面凝结过程, 蒸气分子在体相与过冷壁面间过渡区的微观演化机制尚不清晰, 分子团聚模型认为分子到达壁面凝结前首先在体相中形成一定团簇分布, 但由于观测近壁边界层微小空间中微观粒子的动态演化较为困难, 对该模型的实验验证并不充分. 基于团簇内部的氢键网络, 利用衰减全反射傅里叶红外光谱技术, 实时检测了近壁薄层内蒸气分子凝结过程中的动态行为, 直接验证了近壁区的团簇分布, 表明团簇是凝结和液滴生长的主要单元, 且平均团簇尺寸沿着靠近壁面方向逐渐增大. 利用团簇体的氢键特征, 又观测了乙醇蒸气的近壁面团聚行为, 进一步验证了壁面凝结过程团簇演化的合理性. 此外, 实验发现乙醇蒸气冷凝的团簇分布空间范围要小于同样条件下的水团簇分布范围, 这可能间接表明乙醇蒸气凝结的传热边界层范围小于水蒸气凝结的传热边界层范围, 而导致其传热性能较弱. 利用壁面结构调节近壁区团簇分布, 将为含有不凝气的蒸气冷凝传热或气相水汽捕获等过程的强化提供新方向.
    For the saturated vapor condensation on the cooled surface, the evolution mechanism of vapor molecular in the transition zone between the bulk phase and the cooled surface is not clear yet. The molecular clustering model considers that the vapor molecules first form clusters in the gas phase before condensing on the cooled surface. However, it is difficult to observe the dynamic evolution of nanoparticles in the near-wall boundary layer, hence, the experimental verification about this model is not sufficient now. Based on the hydrogen bonded network formed inside the cluster, in this paper, the attenuated total reflection Fourier transform infrared spectroscopy is introduced to follow and detect the dynamic behavior of vapor molecules in the near-wall thin layer during the condensation process. The infrared spectra of the gas phase at different positions from the cooled surface during the condensation process are obtained. The experimental results directly verify the distribution of clusters in the near-wall region, indicating that clusters are the main units of vapor condensation and droplet growth. Moreover, the average cluster size n increases gradually along the direction near the cooled surface. Based on the hydrogen bond characteristics of clusters, the ethanol molecular clustering near the surface is also observed, which further verifies the rationality of this model. In addition, it’s found that the distribution region along the cooled surface of ethanol clusters during the process of condensation is smaller than that of water clusters under the same condition. This may indirectly indicate that the heat transfer boundary layer of ethanol vapor condensation is thinner than that of water vapor condensation, resulting in its weaker performance of heat transfer. This method, where we use the microstructures manufactured on the surface to regulate the distribution of clusters in the near-wall region, will provide a new insight into enhancing the process of steam condensation with non-condensable gas or efficient water capture from air.
      通信作者: 兰忠, lanzhong@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51476018)资助的课题
      Corresponding author: Lan Zhong, lanzhong@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51476018)
    [1]

    Jakob M 1936 Mech. Eng. 58 729

    [2]

    Tammann G, Boehme W 1935 Ann. Phys. 414 77Google Scholar

    [3]

    Hashimoto H, Kotake S 1995 Therm. Sci. Eng. 3 37

    [4]

    Song T Y, Lan Z, Ma X H, Bai T 2009 Int. J. Therm. Sci. 48 2228Google Scholar

    [5]

    Ma X H, Song T Y, Lan Z, Bai T 2010 Int. J. Therm. Sci. 49 1517Google Scholar

    [6]

    兰忠, 王爱丽, 马学虎, 彭本利, 宋天一 2010 59 6014Google Scholar

    Lan Z, Wang A L, Ma X H, Peng B L, Song T Y 2010 Acta Phys. Sin. 59 6014Google Scholar

    [7]

    徐威, 兰忠, 彭本利, 温荣福, 马学虎 2014 工程热 35 774

    Xu W, Lan Z, Peng B L, Wen R F, Ma X H 2014 J. Eng. Thermophys. 35 774

    [8]

    Xu W, Lan Z, Peng B L, Wen R F, Ma X H 2015 J. Chem. Phys. 142 054701

    [9]

    兰忠, 徐威, 朱霞, 马学虎 2011 60 120508Google Scholar

    Lan Z, Xu W, Zhu X, Ma X H 2011 Acta Phys. Sin. 60 120508Google Scholar

    [10]

    Lan Z, Wang D, Cao K J, Xue Q, Ma X H 2017 Sci. Rep. 7 987Google Scholar

    [11]

    Vernon M F, Krajnovich D J, Kwok H S, Lisy J M, Shen Y R, Lee Y T 1982 J. Chem. Phys. 77 47Google Scholar

    [12]

    Buck U, Huisken F 2001 Chem. Rev. 101 205Google Scholar

    [13]

    Buck U 1994 J. Phys. Chem. 98 5190Google Scholar

    [14]

    Buck U, Ettischer I, Melzer M, Buch V, Sadlej J 1998 Phys. Rev. Lett. 80 2578Google Scholar

    [15]

    Mizuse K, Hamashima T, Fujii A 2009 J. Phys. Chem. A 113 12134Google Scholar

    [16]

    Hamashima T, Mizuse K, Fujii A 2011 J. Phys. Chem. A 115 620Google Scholar

    [17]

    Zurheide F, Dierking C W, Pradzynski C C, Forck R M, Flüggen F, Buck U, Zeuch T 2015 J. Phys. Chem. A 119 2709

    [18]

    Fujii A, Mizuse K 2013 Int. Rev. Phys. Chem. 32 266Google Scholar

    [19]

    Pradzynski C C, Forck R M, Zeuch T, Slavíček P, Buck U 2012 Science 337 1529Google Scholar

    [20]

    Buck U, Pradzynski C C, Zeuch T, Dieterich J M, Hartke B 2014 Phys. Chem. Chem. Phys. 16 6859Google Scholar

    [21]

    Buch V, Sigurd B, Paul Devlin J, Buck U, Kazimirski J K 2004 Int. Rev. Phys. Chem. 23 375Google Scholar

    [22]

    Forck R M, Pradzynski C C, Wolff S, Ončák M, Slavíček P, Zeuch T 2012 Phys. Chem. Chem. Phys. 14 3004Google Scholar

    [23]

    Hu Y J, Fu H B, Bernstein E R 2006 J. Chem. Phys. 125 154305Google Scholar

    [24]

    Shi Y J, Consta S, Das A K, Mallik B, Lacey D, Lipson R H 2002 J. Chem. Phys. 116 6990Google Scholar

    [25]

    Fahrenfort J 1961 Spectrochim. Acta 17 698Google Scholar

    [26]

    Harrick N J 1967 Internal Reflection Spectroscopy (New York: John Wiley & Sons) pp301−320

    [27]

    Lenz A, Ojamäe L 2006 J. Phys. Chem. A 110 13388Google Scholar

  • 图 1  ATR技术检测团簇的原理 (a) 单点衰减全反射; (b) 在ATR附件上的冷凝平台

    Fig. 1.  Condensation experiment platform based on ATR: (a) The single attenuated total; (b) a schematic of the ATR accessory integrated with cooled surface.

    图 2  实验装置示意图(1, 控温炉; 2, 热管; 3, 三维位移平台; 4, 冷凝腔室; 5, ATR附件; 6, 电脑; 7, 洗气瓶; 8, 流量计; 9, 氮气瓶)

    Fig. 2.  Schematic diagram of experimental setup. 1, temperature control furnace; 2, copper heat pipe; 3, three-dimensional displacement platform; 4, condensing chamber; 5, ATR accessory; 6, computer; 7, scrubber; 8, flow meter; 9, nitrogen cylinder.

    图 3  饱和水蒸气在近壁面冷凝的红外光谱 (a) 各位置处的吸收光谱, 各谱线由下而上依次为d = 1700−0 μm; (b) 各吸收光谱的频率, peak 1红移14 cm–1, peak 2红移5.8 cm–1; (c) 各位置处吸收光谱的峰高及两者的相对强度随距离的变化

    Fig. 3.  Infrared spectra of saturated vapor of water condensing near the cooling surface: (a) The absorption spectra at each distance, d = 1700−0 μm from bottom to top; (b) the frequency of maximum intensity in OH bonded stretching region of each spectrum, peak 1 is red-shifted by about 14 cm–1, peak 2 is red-shifted by about 5.8 cm–1; (c) the peak high and the relative intensity of the peak 1 and peak 2 as a function of distance.

    图 4  饱和乙醇蒸气在近壁面冷凝的红外光谱 (a) 距壁面不同距离的气相的红外光谱, 各谱线自下而上依次为d = 2000−0 μm; (b) 各距离处的ATR-FTIR光谱的频率

    Fig. 4.  Infrared spectra of saturated vapor of ethanol condensing near the cooled surface: (a) The absorption spectra at each distance, d = 2000−0 μm from bottom to top; (b) the frequency of maximum intensity in bonded OH stretching region of each ATR-FTIR spectrum of Fig. 4(a).

    Baidu
  • [1]

    Jakob M 1936 Mech. Eng. 58 729

    [2]

    Tammann G, Boehme W 1935 Ann. Phys. 414 77Google Scholar

    [3]

    Hashimoto H, Kotake S 1995 Therm. Sci. Eng. 3 37

    [4]

    Song T Y, Lan Z, Ma X H, Bai T 2009 Int. J. Therm. Sci. 48 2228Google Scholar

    [5]

    Ma X H, Song T Y, Lan Z, Bai T 2010 Int. J. Therm. Sci. 49 1517Google Scholar

    [6]

    兰忠, 王爱丽, 马学虎, 彭本利, 宋天一 2010 59 6014Google Scholar

    Lan Z, Wang A L, Ma X H, Peng B L, Song T Y 2010 Acta Phys. Sin. 59 6014Google Scholar

    [7]

    徐威, 兰忠, 彭本利, 温荣福, 马学虎 2014 工程热 35 774

    Xu W, Lan Z, Peng B L, Wen R F, Ma X H 2014 J. Eng. Thermophys. 35 774

    [8]

    Xu W, Lan Z, Peng B L, Wen R F, Ma X H 2015 J. Chem. Phys. 142 054701

    [9]

    兰忠, 徐威, 朱霞, 马学虎 2011 60 120508Google Scholar

    Lan Z, Xu W, Zhu X, Ma X H 2011 Acta Phys. Sin. 60 120508Google Scholar

    [10]

    Lan Z, Wang D, Cao K J, Xue Q, Ma X H 2017 Sci. Rep. 7 987Google Scholar

    [11]

    Vernon M F, Krajnovich D J, Kwok H S, Lisy J M, Shen Y R, Lee Y T 1982 J. Chem. Phys. 77 47Google Scholar

    [12]

    Buck U, Huisken F 2001 Chem. Rev. 101 205Google Scholar

    [13]

    Buck U 1994 J. Phys. Chem. 98 5190Google Scholar

    [14]

    Buck U, Ettischer I, Melzer M, Buch V, Sadlej J 1998 Phys. Rev. Lett. 80 2578Google Scholar

    [15]

    Mizuse K, Hamashima T, Fujii A 2009 J. Phys. Chem. A 113 12134Google Scholar

    [16]

    Hamashima T, Mizuse K, Fujii A 2011 J. Phys. Chem. A 115 620Google Scholar

    [17]

    Zurheide F, Dierking C W, Pradzynski C C, Forck R M, Flüggen F, Buck U, Zeuch T 2015 J. Phys. Chem. A 119 2709

    [18]

    Fujii A, Mizuse K 2013 Int. Rev. Phys. Chem. 32 266Google Scholar

    [19]

    Pradzynski C C, Forck R M, Zeuch T, Slavíček P, Buck U 2012 Science 337 1529Google Scholar

    [20]

    Buck U, Pradzynski C C, Zeuch T, Dieterich J M, Hartke B 2014 Phys. Chem. Chem. Phys. 16 6859Google Scholar

    [21]

    Buch V, Sigurd B, Paul Devlin J, Buck U, Kazimirski J K 2004 Int. Rev. Phys. Chem. 23 375Google Scholar

    [22]

    Forck R M, Pradzynski C C, Wolff S, Ončák M, Slavíček P, Zeuch T 2012 Phys. Chem. Chem. Phys. 14 3004Google Scholar

    [23]

    Hu Y J, Fu H B, Bernstein E R 2006 J. Chem. Phys. 125 154305Google Scholar

    [24]

    Shi Y J, Consta S, Das A K, Mallik B, Lacey D, Lipson R H 2002 J. Chem. Phys. 116 6990Google Scholar

    [25]

    Fahrenfort J 1961 Spectrochim. Acta 17 698Google Scholar

    [26]

    Harrick N J 1967 Internal Reflection Spectroscopy (New York: John Wiley & Sons) pp301−320

    [27]

    Lenz A, Ojamäe L 2006 J. Phys. Chem. A 110 13388Google Scholar

  • [1] 邱梓恒, AhmedYousif Ghazal, 龙金友, 张嵩. 三乙胺分子构象与红外光谱的理论研究.  , 2022, 71(10): 103601. doi: 10.7498/aps.71.20220123
    [2] 武丽敏, 徐德刚, 王与烨, 葛梅兰, 李海滨, 王泽龙, 姚建铨. 共光路连续太赫兹反射和衰减全反射成像.  , 2021, 70(11): 118701. doi: 10.7498/aps.70.20210182
    [3] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱.  , 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [4] 许兵, 邱子阳, 杨润, 戴耀民, 邱祥冈. 拓扑半金属的红外光谱研究.  , 2019, 68(22): 227804. doi: 10.7498/aps.68.20191510
    [5] 郑志伟, 李大树, 仇性启, 崔运静. 中空液滴碰撞水平壁面数值分析.  , 2017, 66(1): 014704. doi: 10.7498/aps.66.014704
    [6] 王安静, 方勇华, 李大成, 崔方晓, 吴军, 刘家祥, 李扬裕, 赵彦东. 面阵探测下的污染云团红外光谱仿真.  , 2017, 66(11): 114203. doi: 10.7498/aps.66.114203
    [7] 邬融, 田玉婷, 赵东峰, 李大为, 华能, 邵平. 透射衍射光栅内全反射级次.  , 2016, 65(5): 054202. doi: 10.7498/aps.65.054202
    [8] 沈胜强, 张洁珊, 梁刚涛. 液滴撞击加热壁面传热实验研究.  , 2015, 64(13): 134704. doi: 10.7498/aps.64.134704
    [9] 刘宏, 朱京平, 王凯. 基于随机表面微面元理论的二向反射分布函数几何衰减因子修正.  , 2015, 64(18): 184213. doi: 10.7498/aps.64.184213
    [10] 李帅, 张阿漫. 上浮气泡在壁面处的弹跳特性研究.  , 2014, 63(5): 054705. doi: 10.7498/aps.63.054705
    [11] 张元, 王鹿霞. 红外光激发作用下分子导电纳米结的非弹性电流研究.  , 2011, 60(4): 047304. doi: 10.7498/aps.60.047304
    [12] 兰忠, 徐威, 朱霞, 马学虎. 滴状冷凝过程壁面反射光谱的分子团聚模型分析.  , 2011, 60(12): 120508. doi: 10.7498/aps.60.120508
    [13] 朱如曾, 闫红, 王小松. 关于固体表面上液体球冠的平衡条件问题——兼评“冷凝器壁面滴状冷凝的热力学机理及最佳接触角”等文章.  , 2010, 59(10): 7271-7277. doi: 10.7498/aps.59.7271
    [14] 兰忠, 王爱丽, 马学虎, 彭本利, 宋天一. 蒸汽冷凝过程的分子团聚模型及其对不凝性气体影响传热性能的解释.  , 2010, 59(9): 6014-6021. doi: 10.7498/aps.59.6014
    [15] 师丽红, 阎文博. 纯铌酸锂晶体红外光谱的低温研究.  , 2009, 58(7): 4987-4991. doi: 10.7498/aps.58.4987
    [16] 张阿漫, 姚熊亮. 近壁面气泡的运动规律研究.  , 2008, 57(3): 1662-1671. doi: 10.7498/aps.57.1662
    [17] 邵元智, 钟伟荣, 任 山, 蔡志苏, 龚 雷. 纳米团聚生长的多重分形谱.  , 2005, 54(7): 3290-3296. doi: 10.7498/aps.54.3290
    [18] 曹治觉, 郭 愚. 冷凝器壁面滴状冷凝的热力学机理及最佳接触角.  , 1999, 48(10): 1823-1830. doi: 10.7498/aps.48.1823
    [19] 毛念新, 黄叶肖, 陆卫, 叶红娟, 沈学础, 胡志宏, 罗安湘. 天然FeS2(黄铁矿)的红外光谱研究.  , 1993, 42(10): 1712-1718. doi: 10.7498/aps.42.1712
    [20] 潘振华, 钱人元. 聚酰胺6的红外光谱.  , 1962, 18(3): 159-164. doi: 10.7498/aps.18.159
计量
  • 文章访问数:  8014
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-20
  • 修回日期:  2019-07-14
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-20

/

返回文章
返回
Baidu
map