Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of the multilayer relaxation of Cu stepped surfaces

Zhang Jian-Min Xu Ke-Wei Shu Yu Wang Guo-Hong

Citation:

First-principles study of the multilayer relaxation of Cu stepped surfaces

Zhang Jian-Min, Xu Ke-Wei, Shu Yu, Wang Guo-Hong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Using the pseudopotential plane wave (PPPW) method, we performed first principles calculation for the multilayer relaxations and the electron properties of the high-Miller-index stepped Cu(311), (511), (331) and (221) surfaces, which are expressed by 2(100)×(111), 3(100)×(111), 3(111)×(111) and 4(111)×(111), respectively, in the terrace-step notation, i.e. n(hkl)×(uvw). The interlayer relaxations of them are -+-…, --+-…, --+-… and ---+-…, respectively, which follow the atom-row trend: for stepped Cu surface which has n atom rows in the (100) or (111) terrace, the outermost n-1 interlayer spaces contract, then the n interlayer space expands, and the following n+1 interlayer space contracts again. For the stepped surfaces with the same (hkl)×(uvw), the larger the number of atom rows n in the terrace, the greater the contraction magnitude for Δd1,n. We did not find any indication of anomalous relaxation behavior for Cu(511) and (331) as mentioned in some references. Below Fermi energy level, the density of states of the first layer atom at stepped edge has the largest peak value in higher energy regions and has no peak in lower energy regions, so the first layer atom is most unstable and can be dislodged and peeled off more easily than other surface atoms. For the stepped surfaces with the same (hkl)×(uvw), the curves of the density of states have similar shapes for the atoms at the step edge, at the corner, at the terrace and near the corner, and the atoms under the step edge and near the corner.
    [1]

    Desjonquères M C, Spanjaard D 1995 Concepts in Surface Science (New York: Springer Press) p1

    [2]

    Zangwill A 1988 Physics at Surfaces (Cambridge: Cambridge University Press) p1

    [3]

    Widdra W, Trischberger P, Frieβ W, Menzel D, Payne S H, Kreuzer H J 1998 Phys. Rev. B 57 4111

    [4]

    Cai J Q, Tao X M, Chen W B, Zhao X X, Tan M Q 2005 Acta Phys. Sin. 54 5350 (in Chinese) [蔡建秋、陶向明、陈文斌、赵新新、谭明秋 2005 54 5350]

    [5]

    Zhao X X, Tao X M, Chen W B, Chen X, Shang X F, Tan M Q 2006 Acta Phys. Sin. 55 6001 (in Chinese) [赵新新、陶向明、陈文斌、陈 鑫、尚学府、谭明秋 2006 55 6001]

    [6]

    Zhao W, Wang J D, Liu F B, Chen D R 2009 Acta Phys. Sin. 58 3352 (in Chinese) [赵 巍、汪家道、陈峰斌、陈大荣 2009 58 3352]

    [7]

    Zhao X X, Tao X M, Chen W B, Chen X, Shang X F, Tan M Q 2006 Acta Phys. Sin. 55 3629 (in Chinese) [赵新新、陶向明、陈文斌、陈 鑫、尚学府、谭明秋 2006 55 3629]

    [8]

    Silva D J L F, Schroeder K, Blügel S 2004 Phys. Rev. B 69 245411

    [9]

    Sinnott S B, Stave M S, Raeker T J, DePristo A E 1991 Phys. Rev. B 44 8927

    [10]

    Silva D J L F, Schroeder K, Blügel S 2005 Phys. Rev. B 72 33405

    [11]

    Spiak D 2001 Surf. Sci. 489 151

    [12]

    Watson P R, Mitchell K A R 1988 Surf. Sci. 203 323

    [13]

    Parkin S R, Watson P R, McFarlane R A, Mitchell K A R 1991 Solid State Commun. 78 841

    [14]

    Yamaguchi M, Kaburaki H, Freeman A J 2004 Phys. Rev. B 69 45408

    [15]

    Heid R, Bohnen K P, Kara A, Rahman T S 2002 Phys. Rev. B 65 115405

    [16]

    Walko D A, Robinson I K 2001 Phys.Rev. B 64 045412

    [17]

    Walko D A, Robinson I K 1999 Phys. Rev. B 59 15446

    [18]

    Geng W T, Freeman A J 2001 Phys. Rev. B 64 115401

    [19]

    Durukanoglu S, Kara A, Rahman T S 1997 Phys. Rev. B 55 13894

    [20]

    Sklyadneva I Y, Rusina G G, Chulkov E V 1998 Surf. Sci. 416 17

    [21]

    Loisel B, Gorse D, Pontikis V, Lapujoulade J 1989 Surf. Sci. 221 365

    [22]

    Tian Y, Lin K W, Jona F 2000 Phys. Rev. B 62 12844

    [23]

    Silva D J L F, Schroeder K, Blügel S 2004 Phys. Rev. B 70 245432

    [24]

    Jona F 1999 Surf. Sci. Lett. 6 621

    [25]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [26]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [27]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [28]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [29]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 54 11169

    [30]

    Finnis M W, Heine V 1974 J. Phys. F: Met. Phys. 4 L37

    [31]

    Smoluchowski R 1941 Phys. Rev. 60 661

  • [1]

    Desjonquères M C, Spanjaard D 1995 Concepts in Surface Science (New York: Springer Press) p1

    [2]

    Zangwill A 1988 Physics at Surfaces (Cambridge: Cambridge University Press) p1

    [3]

    Widdra W, Trischberger P, Frieβ W, Menzel D, Payne S H, Kreuzer H J 1998 Phys. Rev. B 57 4111

    [4]

    Cai J Q, Tao X M, Chen W B, Zhao X X, Tan M Q 2005 Acta Phys. Sin. 54 5350 (in Chinese) [蔡建秋、陶向明、陈文斌、赵新新、谭明秋 2005 54 5350]

    [5]

    Zhao X X, Tao X M, Chen W B, Chen X, Shang X F, Tan M Q 2006 Acta Phys. Sin. 55 6001 (in Chinese) [赵新新、陶向明、陈文斌、陈 鑫、尚学府、谭明秋 2006 55 6001]

    [6]

    Zhao W, Wang J D, Liu F B, Chen D R 2009 Acta Phys. Sin. 58 3352 (in Chinese) [赵 巍、汪家道、陈峰斌、陈大荣 2009 58 3352]

    [7]

    Zhao X X, Tao X M, Chen W B, Chen X, Shang X F, Tan M Q 2006 Acta Phys. Sin. 55 3629 (in Chinese) [赵新新、陶向明、陈文斌、陈 鑫、尚学府、谭明秋 2006 55 3629]

    [8]

    Silva D J L F, Schroeder K, Blügel S 2004 Phys. Rev. B 69 245411

    [9]

    Sinnott S B, Stave M S, Raeker T J, DePristo A E 1991 Phys. Rev. B 44 8927

    [10]

    Silva D J L F, Schroeder K, Blügel S 2005 Phys. Rev. B 72 33405

    [11]

    Spiak D 2001 Surf. Sci. 489 151

    [12]

    Watson P R, Mitchell K A R 1988 Surf. Sci. 203 323

    [13]

    Parkin S R, Watson P R, McFarlane R A, Mitchell K A R 1991 Solid State Commun. 78 841

    [14]

    Yamaguchi M, Kaburaki H, Freeman A J 2004 Phys. Rev. B 69 45408

    [15]

    Heid R, Bohnen K P, Kara A, Rahman T S 2002 Phys. Rev. B 65 115405

    [16]

    Walko D A, Robinson I K 2001 Phys.Rev. B 64 045412

    [17]

    Walko D A, Robinson I K 1999 Phys. Rev. B 59 15446

    [18]

    Geng W T, Freeman A J 2001 Phys. Rev. B 64 115401

    [19]

    Durukanoglu S, Kara A, Rahman T S 1997 Phys. Rev. B 55 13894

    [20]

    Sklyadneva I Y, Rusina G G, Chulkov E V 1998 Surf. Sci. 416 17

    [21]

    Loisel B, Gorse D, Pontikis V, Lapujoulade J 1989 Surf. Sci. 221 365

    [22]

    Tian Y, Lin K W, Jona F 2000 Phys. Rev. B 62 12844

    [23]

    Silva D J L F, Schroeder K, Blügel S 2004 Phys. Rev. B 70 245432

    [24]

    Jona F 1999 Surf. Sci. Lett. 6 621

    [25]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [26]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [27]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [28]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [29]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 54 11169

    [30]

    Finnis M W, Heine V 1974 J. Phys. F: Met. Phys. 4 L37

    [31]

    Smoluchowski R 1941 Phys. Rev. 60 661

  • [1] Wang Xiu-Yu, Wang Tao, Cui Yu-Ang, Wu Xi-Guang-Run, Wang Yang. First-principles study of effect of impurity compensation on optical properties of Si. Acta Physica Sinica, 2024, 73(11): 116301. doi: 10.7498/aps.73.20231814
    [2] Wang Kun, Qiao Ying-Jie, Zhang Xiao-Hong, Wang Xiao-Dong, Zheng Ting, Bai Cheng-Ying, Zhang Yi-Ming, Du Shi-Yu. First-principles study of effect of ideal tensile/shear strain on chemical bond length and charge density distribution of U3Si2. Acta Physica Sinica, 2022, 71(22): 227102. doi: 10.7498/aps.71.20221210
    [3] Fu Zheng-Hong, Li Ting, Shan Mei-Le, Guo Kang, Gou Guo-Qing. Effect of H on elastic properties of Mg2Si by the first principles calculation. Acta Physica Sinica, 2019, 68(17): 177102. doi: 10.7498/aps.68.20190368
    [4] Wang Xiao-Ka, Tang Fu-Ling, Xue Hong-Tao, Si Feng-Juan, Qi Rong-Fei, Liu Jing-Bo. First-principles study of H, Cl and F passivation for Cu2ZnSnS4(112) surface states. Acta Physica Sinica, 2018, 67(16): 166401. doi: 10.7498/aps.67.20180626
    [5] Lin Qiao-Lu, Li Gong-Ping, Xu Nan-Nan, Liu Huan, Wang Cang-Long. A first-principles study on magnetic properties of the intrinsic defects in rutile TiO2. Acta Physica Sinica, 2017, 66(3): 037101. doi: 10.7498/aps.66.037101
    [6] Shi Yu, Bai Yang, Mo Li-Bin, Xiang Qing-Yun, Huang Ya-Li, Cao Jiang-Li. First-principles calculation for hydrogen-doped hematite. Acta Physica Sinica, 2015, 64(11): 116301. doi: 10.7498/aps.64.116301
    [7] Tang Jie, Zhang Guo-Ying, Bao Jun-Shan, Liu Gui-Li, Liu Chun-Ming. First-principles study of the effect of S impurity on the adhesion of Fe/Al2O3 interface. Acta Physica Sinica, 2014, 63(18): 187101. doi: 10.7498/aps.63.187101
    [8] Chen Li-Jing, Li Wei-Xue, Dai Jian-Feng, Wang Qing. First-prinicples study of Mn-N co-doped p-type ZnO. Acta Physica Sinica, 2014, 63(19): 196101. doi: 10.7498/aps.63.196101
    [9] Deng Sheng-Hua, Jiang Zhi-Lin. First-principles study on p-type ZnO codoped with F and Na. Acta Physica Sinica, 2014, 63(7): 077101. doi: 10.7498/aps.63.077101
    [10] Li Zong-Bao, Wang Xia, Jia Li-Chao. Synergistic effects in Fe/N codoped anatase TiO2 (101) surface:a theoretical study based on density functional theory calculation. Acta Physica Sinica, 2013, 62(20): 203103. doi: 10.7498/aps.62.203103
    [11] Luo Qiang, Tang Bin, Zhang Zhi, Ran Zeng-Ling. First principles calculation of adsorption for H2S on Fe(100) surface. Acta Physica Sinica, 2013, 62(7): 077101. doi: 10.7498/aps.62.077101
    [12] Duan Yong-Hua, Sun Yong. Electronic structure and optical properties of (α, β, γ)-Nb5Si3. Acta Physica Sinica, 2012, 61(21): 217101. doi: 10.7498/aps.61.217101
    [13] Zhao Rong-Da, Zhu Jing-Chuan, Liu Yong, Lai Zhong-Hong. First-principles study of FeAl(B2) microalloyed with La, Ac, Sc and Y. Acta Physica Sinica, 2012, 61(13): 137102. doi: 10.7498/aps.61.137102
    [14] Cheng Zhi-Da, Zhu Jing, Sun Tie-Yu. Stability and magnetism of fcc single-crystal nickel nanowires by first principles calculations. Acta Physica Sinica, 2011, 60(3): 037504. doi: 10.7498/aps.60.037504
    [15] Ma Guo-Jia, Zhu Jia-Qi, Gong Shui-Li, Gao Wei. First principles studies of nitrogen doped tetrahedral amorphous carbon. Acta Physica Sinica, 2011, 60(2): 027104. doi: 10.7498/aps.60.027104
    [16] Jiang Lei, Wang Pei-Ji, Zhang Chang-Wen, Feng Xian-Yang, Lu Yao, Zhang Guo-Lian. Electronic structure and optical properties of Cr doped SnO2 superlattice. Acta Physica Sinica, 2011, 60(9): 093101. doi: 10.7498/aps.60.093101
    [17] Yu Ben-Hai, Liu Mo-Lin, Chen Dong. First principles study of structural, electronic and elastic properties of Mg2 Si polymorphs. Acta Physica Sinica, 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [18] Hu Yu-Ping, Ping Kai-Bin, Yan Zhi-Jie, Yang Wen, Gong Chang-Wei. First-principles calculations of structure and magnetic properties of -Fe(Si)phase precipitated in the Finemet alloy. Acta Physica Sinica, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [19] Zhang Jin-Kui, Deng Sheng-Hua, Jin Hui, Liu Yue-Lin. First-principle study on the electronic structure and p-type conductivity of ZnO. Acta Physica Sinica, 2007, 56(9): 5371-5375. doi: 10.7498/aps.56.5371
    [20] Ma Xin-Guo, Tang Chao-Qun, Huang Jin-Qiu, Hu Lian-Feng, Xue Xia, Zhou Wen-Bin. First-principle calculations on the geometry and relaxation structure of anatase TiO2(101) surface. Acta Physica Sinica, 2006, 55(8): 4208-4213. doi: 10.7498/aps.55.4208
Metrics
  • Abstract views:  8082
  • PDF Downloads:  688
  • Cited By: 0
Publishing process
  • Received Date:  12 March 2009
  • Accepted Date:  25 November 2009
  • Published Online:  15 July 2010

/

返回文章
返回
Baidu
map