-
Using theoretical analysis and numerical calculation, it has been demonstrated that the closed periodic cusped magnetic (PCM) field can effectively confine the sheet electron beam in two transverse directions simultaneously to realize the stable long distance transport, where the beam cross-section has an attainable shape of the state of the art. Moreover, the method for matching the transverse magnetic focusing force and the inner space charge force in the wide dimension of the sheet beam is given, which can be used to determine the longitudinal periodic length and the cross section shape of the closed PCM structure. The calculation has also shown that the optimum focusing can be acquired through adjusting the width of the closed PCM structure independently. And besides, it has been proven that the offset PCM structure is not a good choice for sheet beams’ confinement. The work presented in the paper indicates that the closed PCM structure is very promising, and it’s helpful for guiding the practical engineering design.
-
Keywords:
- closed PCM structure /
- focusing /
- sheet electron beam
[1] [1]Read M E, Jabotinski V, Miram G, Ives L 2005 IEEE Trans. Plasma Sci. 33 647
[2] [2]Scheitrum G 2005 High Energy Density and High Power RF, AIP Conf. Proc. 807 (American Institute of Physics) p120
[3] [3]Scheitrum G, Caryotakis G, Burke A, Jensen A, Jongewaard E, Krasnykh A, Neubauer M, Phillips R, Rauenbuehler K 2004 Conference Digest of the 2004 Joint 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics (IEEE) p525
[4] [4]Humphries S, Russell S, Carlsten B, Earley L, Ferguson P 2004 Phys. Rev. ST Accel. Beams 7 060401
[5] [5]Russel S J, Wang Z F, Haynes W B, Wheat R M, Jr., Carlsten B E, Earley L M, Humphries S, Jr., Ferguson P 2005 Phys. Rev. ST Accel. Beams 8 080401
[6] [6]Booske J H, McVey B D, Antonsen T M, Jr. 1993 J. Appl. Phys. 73 4140
[7] [7]Booske J H, Basten M A, Kumbasar A H, Antonsen T M, Jr., Bidwell S W, Carmel Y, Destler W W, Granatstein V L, Radack D J 1994 Phys. Plasmas 1 1714
[8] [8]Basten M A, Booske J H 1999 J. Appl. Phys. 85 6313
[9] [9]Booske J H, Basten M A 1999 IEEE Trans. Plasma Sci. 27 134
[10] ]Carlsten B E, Earley L M, Krawczyk F L, Russell S J, Potter J M, Ferguson P, Humphries S, Jr. 2005 Phys. Rev. ST Accel. Beams 8 062002
[11] ]Mendel J T, Quate C F, Yocom W H 1954 Proc. IRE 42 800
[12] ]True R 1984 IEEE Trans. Electron Devices 31 353
-
[1] [1]Read M E, Jabotinski V, Miram G, Ives L 2005 IEEE Trans. Plasma Sci. 33 647
[2] [2]Scheitrum G 2005 High Energy Density and High Power RF, AIP Conf. Proc. 807 (American Institute of Physics) p120
[3] [3]Scheitrum G, Caryotakis G, Burke A, Jensen A, Jongewaard E, Krasnykh A, Neubauer M, Phillips R, Rauenbuehler K 2004 Conference Digest of the 2004 Joint 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics (IEEE) p525
[4] [4]Humphries S, Russell S, Carlsten B, Earley L, Ferguson P 2004 Phys. Rev. ST Accel. Beams 7 060401
[5] [5]Russel S J, Wang Z F, Haynes W B, Wheat R M, Jr., Carlsten B E, Earley L M, Humphries S, Jr., Ferguson P 2005 Phys. Rev. ST Accel. Beams 8 080401
[6] [6]Booske J H, McVey B D, Antonsen T M, Jr. 1993 J. Appl. Phys. 73 4140
[7] [7]Booske J H, Basten M A, Kumbasar A H, Antonsen T M, Jr., Bidwell S W, Carmel Y, Destler W W, Granatstein V L, Radack D J 1994 Phys. Plasmas 1 1714
[8] [8]Basten M A, Booske J H 1999 J. Appl. Phys. 85 6313
[9] [9]Booske J H, Basten M A 1999 IEEE Trans. Plasma Sci. 27 134
[10] ]Carlsten B E, Earley L M, Krawczyk F L, Russell S J, Potter J M, Ferguson P, Humphries S, Jr. 2005 Phys. Rev. ST Accel. Beams 8 062002
[11] ]Mendel J T, Quate C F, Yocom W H 1954 Proc. IRE 42 800
[12] ]True R 1984 IEEE Trans. Electron Devices 31 353
Catalog
Metrics
- Abstract views: 7627
- PDF Downloads: 736
- Cited By: 0