[1] |
Wang Fei-Fei, Fang Jian-Hui, Wang Ying-Li, Xu Rui-Li. Noether symmetry and Mei symmetry of a discrete holonomic mechanical system with variable mass. Acta Physica Sinica,
2014, 63(17): 170202.
doi: 10.7498/aps.63.170202
|
[2] |
Jiang Wen-An, Luo Shao-Kai. Mei symmetry leading to Mei conserved quantity of generalized Hamiltonian system. Acta Physica Sinica,
2011, 60(6): 060201.
doi: 10.7498/aps.60.060201
|
[3] |
Luo Shao-Kai, Jia Li-Qun, Xie Yin-Li. Mei conserved quantity deduced from Mei symmetry of Appell equation in a dynamical system of relative motion. Acta Physica Sinica,
2011, 60(4): 040201.
doi: 10.7498/aps.60.040201
|
[4] |
Jia Li-Qun, Zhang Yao-Yu, Yang Xin-Fang, Cui Jin-Chao, Xie Yin-Li. Type Ⅲ structural equation and Mei conserved quantity of Mei symmetry for a Lagrangian system. Acta Physica Sinica,
2010, 59(5): 2939-2941.
doi: 10.7498/aps.59.2939
|
[5] |
Huang Xiao-Hong, Zhang Xiao-Bo, Shi Shen-Yang. The Mei symmetry of discrete difference sequence mechanical system with variable mass. Acta Physica Sinica,
2008, 57(10): 6056-6062.
doi: 10.7498/aps.57.6056
|
[6] |
Jia Li-Qun, Luo Shao-Kai, Zhang Yao-Yu. Mei symmetry and Mei conserved quantity of Nielsen equation for a nonholonomic system. Acta Physica Sinica,
2008, 57(4): 2006-2010.
doi: 10.7498/aps.57.2006
|
[7] |
Jia Li-Qun, Zheng Shi-Wang, Zhang Yao-Yu. Mei symmetry and Mei conserved quantity of nonholonomic systems of non-Chetaev’s type in event space. Acta Physica Sinica,
2007, 56(10): 5575-5579.
doi: 10.7498/aps.56.5575
|
[8] |
Jing Hong-Xing, Li Yuan-Cheng, Xia Li-Li. Perturbation of Lie symmetries and a type of generalized Hojman adiabatic invariants for variable mass systems with unilateral holonomic constraints. Acta Physica Sinica,
2007, 56(6): 3043-3049.
doi: 10.7498/aps.56.3043
|
[9] |
Zhang Yi. Perturbation of symmetries and Hojman adiabatic invariants of discrete mechanical systems in the phase space. Acta Physica Sinica,
2007, 56(4): 1855-1859.
doi: 10.7498/aps.56.1855
|
[10] |
Xia Li-Li, Li Yuan-Cheng. Perturbation to symmetries and adiabatic invariant for nonholonomic controllable mechanical system in phase place. Acta Physica Sinica,
2007, 56(11): 6183-6187.
doi: 10.7498/aps.56.6183
|
[11] |
Fang Jian-Hui, Ding Ning, Wang Peng. Noether-Lie symmetry of non-holonomic mechanical system. Acta Physica Sinica,
2006, 55(8): 3817-3820.
doi: 10.7498/aps.55.3817
|
[12] |
Zhang Yi, Fan Cun-Xin, Mei Feng-Xiang. Perturbation of symmetries and Hojman adiabatic invariants for Lagrangian system. Acta Physica Sinica,
2006, 55(7): 3237-3240.
doi: 10.7498/aps.55.3237
|
[13] |
Zhang Yi. Symmetries and Mei conserved quantities for systems of generalized classical mechanics. Acta Physica Sinica,
2005, 54(7): 2980-2984.
doi: 10.7498/aps.54.2980
|
[14] |
Gu Shu-Long, Zhang Hong-Bin. Mei symmetry, Noether symmetry and Lie symmetry of a Vacco system. Acta Physica Sinica,
2005, 54(9): 3983-3986.
doi: 10.7498/aps.54.3983
|
[15] |
Zhang Yi, Ge Wei-Kuan. A new conservation law from Mei symmetry for the relativistic mechanical system. Acta Physica Sinica,
2005, 54(4): 1464-1467.
doi: 10.7498/aps.54.1464
|
[16] |
Fang Jian-Hui, Peng Yong, Liao Yong-Pan. On Mei symmetry of Lagrangian system and Hamiltonian system. Acta Physica Sinica,
2005, 54(2): 496-499.
doi: 10.7498/aps.54.496
|
[17] |
Li Hong, Fang Jian-Hui. Mei symmetry of variable mass systems with unilateral holonomic constraints. Acta Physica Sinica,
2004, 53(9): 2807-2810.
doi: 10.7498/aps.53.2807
|
[18] |
Luo Shao-Kai. Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian system. Acta Physica Sinica,
2003, 52(12): 2941-2944.
doi: 10.7498/aps.52.2941
|
[19] |
Zhang Yi, Mei Feng-Xiang. Perturbation to symmetries and adiabatic invariant for systems of generalized c lassical mechanics. Acta Physica Sinica,
2003, 52(10): 2368-2372.
doi: 10.7498/aps.52.2368
|
[20] |
Zhang Yi. . Acta Physica Sinica,
2002, 51(8): 1666-1670.
doi: 10.7498/aps.51.1666
|