[1] |
Jia Li-Qun, Sun Xian-Ting, Zhang Mei-Ling, Zhang Yao-Yu, Han Yue-Lin. Generalized Hojman conserved quantity deduced from generalized Lie symmetry of Appell equations for a variable mass mechanical system in relative motion. Acta Physica Sinica,
2014, 63(1): 010201.
doi: 10.7498/aps.63.010201
|
[2] |
Xu Rui-Li, Fang Jian-Hui, Zhang Bin. The Noether conserved quantity of Lie symmetry for discrete difference sequence Hamilton system with variable mass. Acta Physica Sinica,
2013, 62(15): 154501.
doi: 10.7498/aps.62.154501
|
[3] |
Xu Chao, Li Yuan-Cheng. Noether-Lie symmetry and conserved quantities of Nielsen equations for a singular variable mass nonholonomic system with unilateral constraints. Acta Physica Sinica,
2013, 62(17): 171101.
doi: 10.7498/aps.62.171101
|
[4] |
Wang Xiao-Xiao, Sun Xian-Ting, Zhang Mei-Ling, Xie Yin-Li, Jia Li-Qun. Noether symmetry and Noether conserved quantity of Nielsen equation in a dynamical system of the relative motion with nonholonomic constraint of Chetaev's type. Acta Physica Sinica,
2012, 61(6): 064501.
doi: 10.7498/aps.61.064501
|
[5] |
Liu Xiao-Wei, Li Yuan-Cheng. Noether-Lie symmetry and conserved quantities of the Rosenberg problem. Acta Physica Sinica,
2011, 60(7): 070201.
doi: 10.7498/aps.60.070201
|
[6] |
Gu Shu-Long, Zhang Hong-Bin. Noether symmetry and the Hojman conserved quantity of the Kepler equation. Acta Physica Sinica,
2010, 59(2): 716-718.
doi: 10.7498/aps.59.716
|
[7] |
Wang Chuan-Dong, Liu Shi-Xing, Mei Feng-Xiang. Generalized Pfaff-Birkhoff-d’Alembert principle and form invariance of generalized Birkhoff’s equations. Acta Physica Sinica,
2010, 59(12): 8322-8325.
doi: 10.7498/aps.59.8322
|
[8] |
Dong Wen-Shan, Huang Bao-Xin. Lie symmetries and Noether conserved quantities of generalized nonholonomic mechanical systems. Acta Physica Sinica,
2010, 59(1): 1-6.
doi: 10.7498/aps.59.1
|
[9] |
Liu Chang, Zhao Yong-Hong, Chen Xiang-Wei. Geometric representation of Noether symmetry for dynamical systems. Acta Physica Sinica,
2010, 59(1): 11-14.
doi: 10.7498/aps.59.11
|
[10] |
Xia Li-Li, Li Yuan-Cheng, Wang Xian-Jun. Non-Noether conserved quantities for nonholonomic controllable mechanical systems with relativistic rotational variable mass. Acta Physica Sinica,
2009, 58(1): 28-33.
doi: 10.7498/aps.58.28
|
[11] |
Ding Ning, Fang Jian-Hui. A new type of Mei adiabatic invariant induced by perturbation to Mei symmetry for nonholonomic mechanical systems. Acta Physica Sinica,
2009, 58(11): 7440-7446.
doi: 10.7498/aps.58.7440
|
[12] |
Cui Jian-Xin, Gao Hai-Bo, Hong Wen-Xue. Mei symmetries and the Noether conserved quantities of super-thin elastic rod. Acta Physica Sinica,
2009, 58(11): 7426-7430.
doi: 10.7498/aps.58.7426
|
[13] |
Shi Shen-Yang, Huang Xiao-Hong, Zhang Xiao-Bo, Jin Li. The Lie symmetry and Noether conserved quantity of discrete difference variational Hamilton system. Acta Physica Sinica,
2009, 58(6): 3625-3631.
doi: 10.7498/aps.58.3625
|
[14] |
Xia Li-Li, Li Yuan-Cheng. Non-Noether conserved quantity for relativistic nonholonomic controllable mechanical system with variable mass. Acta Physica Sinica,
2008, 57(8): 4652-4656.
doi: 10.7498/aps.57.4652
|
[15] |
Zhang Peng-Yu, Fang Jian-Hui. Lie symmetry and non-Noether conserved quantities of variable mass Birkhoffian system. Acta Physica Sinica,
2006, 55(8): 3813-3816.
doi: 10.7498/aps.55.3813
|
[16] |
Ge Wei-Kuan, Zhang Yi. Lie-form invariance of holonomic mechanical systems. Acta Physica Sinica,
2005, 54(11): 4985-4988.
doi: 10.7498/aps.54.4985
|
[17] |
Luo Shao-Kai, Guo Yong-Xin, Mei Feng-Xiang. Noether symmetry and Hojman conserved quantity for nonholonomic mechanical systems. Acta Physica Sinica,
2004, 53(5): 1270-1275.
doi: 10.7498/aps.53.1270
|
[18] |
Qiao Yong-Fen, Zhao Shu-Hong, Li Ren-Jie. Non Noether conserved quantity of the holonomic mechanical systems in terms of quasi-coordinates ——An extension of Hojman theorem. Acta Physica Sinica,
2004, 53(7): 2035-2039.
doi: 10.7498/aps.53.2035
|
[19] |
Luo Shao-Kai, Mei Feng-Xiang. A non-Noether conserved quantity, i.e. Hojman conserved quantity, for nonholonomic mechanical systems. Acta Physica Sinica,
2004, 53(3): 6-10.
doi: 10.7498/aps.53.6
|
[20] |
Xu Zhi-Xin. . Acta Physica Sinica,
2002, 51(11): 2423-2425.
doi: 10.7498/aps.51.2423
|