[1] |
Sun Xian-Ting, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun. Form invariance and Mei conserved quantity for generalized Hamilton systems after adding additional terms. Acta Physica Sinica,
2015, 64(6): 064502.
doi: 10.7498/aps.64.064502
|
[2] |
Wang Ting-Zhi, Sun Xian-Ting, Han Yue-Lin. A new type of conserved quantity deduced from conformal invariance in nonholonomic mechanical system. Acta Physica Sinica,
2014, 63(9): 090201.
doi: 10.7498/aps.63.090201
|
[3] |
Liu Hong-Wei. Conformal symmetry and Mei conserved quantity for ageneralized Hamilton system. Acta Physica Sinica,
2014, 63(5): 050201.
doi: 10.7498/aps.63.050201
|
[4] |
Wang Ting-Zhi, Sun Xian-Ting, Han Yue-Lin. Conformal invariance and conserved quantity of relative motion holonomic dynamical system in phase space. Acta Physica Sinica,
2014, 63(10): 104502.
doi: 10.7498/aps.63.104502
|
[5] |
Liu Hong-Wei, Li Ling-Fei, Yang Shi-Tong. Conformal invariance, Mei symmetry and the conserved quantity of the Kepler equation. Acta Physica Sinica,
2012, 61(20): 200202.
doi: 10.7498/aps.61.200202
|
[6] |
Yao Tian-Liang, Liu Hai-Feng, Xu Jian-Liang, Li Wei-Feng. Noise-level estimation of noisy chaotic time series based on the invariant of the largest Lyapunov exponent. Acta Physica Sinica,
2012, 61(6): 060503.
doi: 10.7498/aps.61.060503
|
[7] |
Wang Chuan-Dong, Liu Shi-Xing, Mei Feng-Xiang. Generalized Pfaff-Birkhoff-d’Alembert principle and form invariance of generalized Birkhoff’s equations. Acta Physica Sinica,
2010, 59(12): 8322-8325.
doi: 10.7498/aps.59.8322
|
[8] |
Cai Jian-Le, Mei Feng-Xiang. Conformal invariance and conserved quantity of Lagrange systems under Lie point transformation. Acta Physica Sinica,
2008, 57(9): 5369-5373.
doi: 10.7498/aps.57.5369
|
[9] |
Liu Chang, Liu Shi-Xing, Mei Feng-Xiang, Guo Yong-Xin. Conformal invariance and Hojman conserved quantities of generalized Hamilton systems. Acta Physica Sinica,
2008, 57(11): 6709-6713.
doi: 10.7498/aps.57.6709
|
[10] |
Liu Chang, Mei Feng-Xiang, Guo Yong-Xin. Conformal symmetry and Hojman conserved quantity of Lagrange system. Acta Physica Sinica,
2008, 57(11): 6704-6708.
doi: 10.7498/aps.57.6704
|
[11] |
Hu Chu-Le, Xie Jia-Fang. Form invariance and Hojman conserved quantity of Maggi equation. Acta Physica Sinica,
2007, 56(9): 5045-5048.
doi: 10.7498/aps.56.5045
|
[12] |
Xia Li-Li, Li Yuan-Cheng, Wang Jing, Hou Qi-Bao. Noether form invariance of nonholonomic controllable mechanical systems of non-Chetaev’s type. Acta Physica Sinica,
2006, 55(10): 4995-4998.
doi: 10.7498/aps.55.4995
|
[13] |
Ge Wei-Kuan, Zhang Yi. Lie-form invariance of holonomic mechanical systems. Acta Physica Sinica,
2005, 54(11): 4985-4988.
doi: 10.7498/aps.54.4985
|
[14] |
Lou Zhi-Mei. Form invariance for Hamiltonian Ermakov systems. Acta Physica Sinica,
2005, 54(5): 1969-1971.
doi: 10.7498/aps.54.1969
|
[15] |
Lou Zhi-Mei. Form invariance of second-order linear nonholonomic systems in phase space. Acta Physica Sinica,
2004, 53(7): 2046-2049.
doi: 10.7498/aps.53.2046
|
[16] |
Liu Shi-Kuo, Chen Hua, Fu Zun-Tao, Liu Shi-Da. LamDe' function and invariants of multi-order exact solutions among nonline ar evolution equations. Acta Physica Sinica,
2003, 52(8): 1842-1847.
doi: 10.7498/aps.52.1842
|
[17] |
Chen Pei-Sheng, Fang Jian-Hui. Form invariance of nonconservative nonholonomic systems in the phase space. Acta Physica Sinica,
2003, 52(5): 1044-1047.
doi: 10.7498/aps.52.1044
|
[18] |
ZENG SHAO-QUN, XU HAI-FENG, LI JIAO-YANG, LIU XIAO-DE. ON THE LINEAR SHIFT INVARIANCE OF THE THERMAL WAVE IMAGING. Acta Physica Sinica,
1997, 46(7): 1338-1343.
doi: 10.7498/aps.46.1338
|
[19] |
GUAN XI-WEN, XIONG ZHUANG, ZHOU HUAN-QIANG. HIDDEN LOCAL GAUGE INVARIANCE IN FATEEV-ZAMOLO-DCHIKOV QUANTUM SPIN CHAIN. Acta Physica Sinica,
1993, 42(2): 331-339.
doi: 10.7498/aps.42.331
|
[20] |
LI SHI-CHEN, NI WEN-JUN, YU JIAN. AN ANALYSIS OF PARAMETER CONSTANCY OF LIGHT BEAM FOR MULTILENS RESONATORS. Acta Physica Sinica,
1989, 38(12): 2049-2053.
doi: 10.7498/aps.38.2049
|