[1] |
Sun Xian-Ting, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun. Form invariance and Mei conserved quantity for generalized Hamilton systems after adding additional terms. Acta Physica Sinica,
2015, 64(6): 064502.
doi: 10.7498/aps.64.064502
|
[2] |
Zhang Fang, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun. Conformal invariance and conserved quantity of Mei symmetry for Appell equation in a holonomic system in relative motion. Acta Physica Sinica,
2015, 64(13): 134501.
doi: 10.7498/aps.64.134501
|
[3] |
Wang Ting-Zhi, Sun Xian-Ting, Han Yue-Lin. Conformal invariance and conserved quantity of relative motion holonomic dynamical system in phase space. Acta Physica Sinica,
2014, 63(10): 104502.
doi: 10.7498/aps.63.104502
|
[4] |
Wang Ting-Zhi, Sun Xian-Ting, Han Yue-Lin. A new type of conserved quantity deduced from conformal invariance in nonholonomic mechanical system. Acta Physica Sinica,
2014, 63(9): 090201.
doi: 10.7498/aps.63.090201
|
[5] |
Liu Hong-Wei. Conformal symmetry and Mei conserved quantity for ageneralized Hamilton system. Acta Physica Sinica,
2014, 63(5): 050201.
doi: 10.7498/aps.63.050201
|
[6] |
Zhang Fang, Li Wei, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun. Conformal invariance and conserved quantity of Mei symmetry for Appell equations in nonholonomic systems of Chetaev’s type with variable mass. Acta Physica Sinica,
2014, 63(16): 164501.
doi: 10.7498/aps.63.164501
|
[7] |
Sun Xian-Ting, Zhang Yao-Yu, Zhang Fang, Jia Li-Qun. Conformal invariance and Hojman conserved quantity of Lie symmetry for Appell equations in a holonomic system. Acta Physica Sinica,
2014, 63(14): 140201.
doi: 10.7498/aps.63.140201
|
[8] |
Wang Ting-Zhi, Sun Xian-Ting, Han Yue-Lin. Conformal invariance and conserved quantity for a variable mass holonomic system in relative motion. Acta Physica Sinica,
2013, 62(23): 231101.
doi: 10.7498/aps.62.231101
|
[9] |
Han Yue-Lin, Sun Xian-Ting, Zhang Yao-Yu, Jia Li-Qun. Conformal invariance and conserved quantity of Mei symmetry for Appell equations in holonomic system. Acta Physica Sinica,
2013, 62(16): 160201.
doi: 10.7498/aps.62.160201
|
[10] |
Cai Jian-Le, Shi Sheng-Shui. Conformal invariance and conserved quantity of Mei symmetry for the nonholonomic system of Chetaev's type. Acta Physica Sinica,
2012, 61(3): 030201.
doi: 10.7498/aps.61.030201
|
[11] |
Liu Hong-Wei, Li Ling-Fei, Yang Shi-Tong. Conformal invariance, Mei symmetry and the conserved quantity of the Kepler equation. Acta Physica Sinica,
2012, 61(20): 200202.
doi: 10.7498/aps.61.200202
|
[12] |
Jiang Wen-An, Luo Shao-Kai. Mei symmetry leading to Mei conserved quantity of generalized Hamiltonian system. Acta Physica Sinica,
2011, 60(6): 060201.
doi: 10.7498/aps.60.060201
|
[13] |
Xie Yin-Li, Jia Li-Qun, Yang Xin-Fang. Lie symmetry and Hojman conserved quantity of Nielsen equation in a dynamical system of the relative motion. Acta Physica Sinica,
2011, 60(3): 030201.
doi: 10.7498/aps.60.030201
|
[14] |
Cai Jian-Le. Conformal invariance and conserved quantities of Mei symmetry for general holonomic systems. Acta Physica Sinica,
2009, 58(1): 22-27.
doi: 10.7498/aps.58.22
|
[15] |
Cai Jian-Le, Mei Feng-Xiang. Conformal invariance and conserved quantity of Lagrange systems under Lie point transformation. Acta Physica Sinica,
2008, 57(9): 5369-5373.
doi: 10.7498/aps.57.5369
|
[16] |
Liu Chang, Mei Feng-Xiang, Guo Yong-Xin. Conformal symmetry and Hojman conserved quantity of Lagrange system. Acta Physica Sinica,
2008, 57(11): 6704-6708.
doi: 10.7498/aps.57.6704
|
[17] |
Hu Chu-Le, Xie Jia-Fang. Form invariance and Hojman conserved quantity of Maggi equation. Acta Physica Sinica,
2007, 56(9): 5045-5048.
doi: 10.7498/aps.56.5045
|
[18] |
Jia Li-Qun, Zheng Shi-Wang. Mei symmetry of generalized Hamilton systems with additional terms. Acta Physica Sinica,
2006, 55(8): 3829-3832.
doi: 10.7498/aps.55.3829
|
[19] |
Qiao Yong-Fen, Li Ren-Jie, Sun Dan-Na. Hojman’s conservation theorems for Raitzin’s canonical equations of motion of nonlinear nonholonomic systems. Acta Physica Sinica,
2005, 54(2): 490-495.
doi: 10.7498/aps.54.490
|
[20] |
Luo Shao-Kai, Guo Yong-Xin, Mei Feng-Xiang. Form invariance and Hojman conserved quantity for nonholonomic mechanical systems. Acta Physica Sinica,
2004, 53(8): 2413-2418.
doi: 10.7498/aps.53.2413
|