[1] |
Sun Xian-Ting, Zhang Yao-Yu, Xue Xi-Chang, Jia Li-Qun. Form invariance and Mei conserved quantity for generalized Hamilton systems after adding additional terms. Acta Physica Sinica,
2015, 64(6): 064502.
doi: 10.7498/aps.64.064502
|
[2] |
Wang Chuan-Dong, Liu Shi-Xing, Mei Feng-Xiang. Generalized Pfaff-Birkhoff-d’Alembert principle and form invariance of generalized Birkhoff’s equations. Acta Physica Sinica,
2010, 59(12): 8322-8325.
doi: 10.7498/aps.59.8322
|
[3] |
Cai Jian-Le, Mei Feng-Xiang. Conformal invariance and conserved quantity of Lagrange systems under Lie point transformation. Acta Physica Sinica,
2008, 57(9): 5369-5373.
doi: 10.7498/aps.57.5369
|
[4] |
Hu Chu-Le, Xie Jia-Fang. Form invariance and Hojman conserved quantity of Maggi equation. Acta Physica Sinica,
2007, 56(9): 5045-5048.
doi: 10.7498/aps.56.5045
|
[5] |
Xia Li-Li, Li Yuan-Cheng, Wang Jing, Hou Qi-Bao. Noether form invariance of nonholonomic controllable mechanical systems of non-Chetaev’s type. Acta Physica Sinica,
2006, 55(10): 4995-4998.
doi: 10.7498/aps.55.4995
|
[6] |
Qiao Yong-Fen, Zhao Shu-Hong. Form invariance and non-Noether conserved quantity of generalized Raitzin’s canonical equations of non-conservative system. Acta Physica Sinica,
2006, 55(2): 499-503.
doi: 10.7498/aps.55.499
|
[7] |
Ge Wei-Kuan, Zhang Yi. Lie-form invariance of holonomic mechanical systems. Acta Physica Sinica,
2005, 54(11): 4985-4988.
doi: 10.7498/aps.54.4985
|
[8] |
Ge Wei-Kuan. Effects of mass variation on form invariance and conserved quantity of mechanical systems. Acta Physica Sinica,
2005, 54(6): 2478-2481.
doi: 10.7498/aps.54.2478
|
[9] |
Xu Xue-Jun, Mei Feng-Xiang, Qin Mao-Chang. A nonNoether conserved quantity constructed using form invariance for Nielsen equation of a non-conservativemechanical system. Acta Physica Sinica,
2004, 53(12): 4021-4025.
doi: 10.7498/aps.53.4021
|
[10] |
Lou Zhi-Mei. Form invariance of second-order linear nonholonomic systems in phase space. Acta Physica Sinica,
2004, 53(7): 2046-2049.
doi: 10.7498/aps.53.2046
|
[11] |
Luo Shao-Kai, Guo Yong-Xin, Mei Feng-Xiang. Form invariance and Hojman conserved quantity for nonholonomic mechanical systems. Acta Physica Sinica,
2004, 53(8): 2413-2418.
doi: 10.7498/aps.53.2413
|
[12] |
Zhang Yi. Form invariance of mechanical systems with unilateral holonomic constraints. Acta Physica Sinica,
2004, 53(2): 331-336.
doi: 10.7498/aps.53.331
|
[13] |
Chen Pei-Sheng, Fang Jian-Hui. Form invariance of nonconservative nonholonomic systems in the phase space. Acta Physica Sinica,
2003, 52(5): 1044-1047.
doi: 10.7498/aps.52.1044
|
[14] |
Ge Wei-Kuan, Zhang Yi. Form invariance for a constrained system with second-order reducible differentia l constraints. Acta Physica Sinica,
2003, 52(9): 2105-2108.
doi: 10.7498/aps.52.2105
|
[15] |
Qiao Yong-Fen, Zhang Yao-Liang, Han Guang-Cai. Form invariance of Hamilton's canonical equations of a nonholonomic mechanical s ystem. Acta Physica Sinica,
2003, 52(5): 1051-1056.
doi: 10.7498/aps.52.1051
|
[16] |
Fang Jian-Hui, Yan Xiang-Hong, Chen Pei-Sheng. Form invariance and Noether symmetry of a relativistic mechanical system. Acta Physica Sinica,
2003, 52(7): 1561-1564.
doi: 10.7498/aps.52.1561
|
[17] |
Fang Jian-Hui, Chen Pei-Sheng, Zhang Jun, Li Hong. Form invariance and Lie symmetry of relativistic mechanical system. Acta Physica Sinica,
2003, 52(12): 2945-2948.
doi: 10.7498/aps.52.2945
|
[18] |
Luo Shao-Kai. . Acta Physica Sinica,
2002, 51(4): 712-717.
doi: 10.7498/aps.51.712
|
[19] |
Fang Jian-Hui, Xue Qing-Zhong, Zhao Shou-Qing. . Acta Physica Sinica,
2002, 51(10): 2183-2185.
doi: 10.7498/aps.51.2183
|
[20] |
Ge Wei-Kuan. . Acta Physica Sinica,
2002, 51(5): 939-942.
doi: 10.7498/aps.51.939
|