[1] |
Yan Yu-Wei, Jiang Yuan, Yang Song-Qing, Yu Rong-Bin, Hong Cheng. Network failure model based on time series. Acta Physica Sinica,
2022, 71(8): 088901.
doi: 10.7498/aps.71.20212106
|
[2] |
Li Jun, Li Da-Chao. Wind power time series prediction using optimized kernel extreme learning machine method. Acta Physica Sinica,
2016, 65(13): 130501.
doi: 10.7498/aps.65.130501
|
[3] |
Wei De-Zhi, Chen Fu-Ji, Zheng Xiao-Xue. Internet public opinion chaotic prediction based on chaos theory and the improved radial basis function in neural networks. Acta Physica Sinica,
2015, 64(11): 110503.
doi: 10.7498/aps.64.110503
|
[4] |
Tian Zhong-Da, Li Shu-Jiang, Wang Yan-Hong, Gao Xian-Wen. Chaotic characteristics analysis and prediction for short-term wind speed time series. Acta Physica Sinica,
2015, 64(3): 030506.
doi: 10.7498/aps.64.030506
|
[5] |
Qiao Li-Hua, Zhao Tong-Jun, Gu Jian-Zhong, Zhuo Yi-Zhong. Eigen model of randomness in species evolution. Acta Physica Sinica,
2014, 63(10): 108701.
doi: 10.7498/aps.63.108701
|
[6] |
Sheng Zheng. Research on different time-scale prediction models for the total electron content. Acta Physica Sinica,
2012, 61(21): 219401.
doi: 10.7498/aps.61.219401
|
[7] |
Yao Tian-Liang, Liu Hai-Feng, Xu Jian-Liang, Li Wei-Feng. Noise-level estimation of noisy chaotic time series based on the invariant of the largest Lyapunov exponent. Acta Physica Sinica,
2012, 61(6): 060503.
doi: 10.7498/aps.61.060503
|
[8] |
Hou Feng-Zhen, Huang Xiao-Lin, Zhuang Jian-Jun, Huo Cheng-Yu, Ning Xin-Bao. Multi-scale strategy and data surrogating test: two elements for the detection of time irreversibility in heart rate variability. Acta Physica Sinica,
2012, 61(22): 220507.
doi: 10.7498/aps.61.220507
|
[9] |
Wu Jian-Jun, Xu Shang-Yi, Sun Hui-Jun. Detrended fluctuation analysis of time series in mixed traffic flow. Acta Physica Sinica,
2011, 60(1): 019502.
doi: 10.7498/aps.60.019502
|
[10] |
Xiu Chun-Bo, Xu Meng. Multi-step prediction method for time series based on chaotic operator network. Acta Physica Sinica,
2010, 59(11): 7650-7656.
doi: 10.7498/aps.59.7650
|
[11] |
Dong Zhao, Li Xiang. The study of network motifs induced from discrete time series. Acta Physica Sinica,
2010, 59(3): 1600-1607.
doi: 10.7498/aps.59.1600
|
[12] |
Yang Yong-Feng, Ren Xing-Min, Qin Wei-Yang, Wu Ya-Feng, Zhi Xi-Zhe. Prediction of chaotic time series based on EMD method. Acta Physica Sinica,
2008, 57(10): 6139-6144.
doi: 10.7498/aps.57.6139
|
[13] |
Jiang Ke-Yu, Cai Zhi-Ming, Lu Zhen-Bo. A test method for weak nonlinearity in time series. Acta Physica Sinica,
2008, 57(3): 1471-1476.
doi: 10.7498/aps.57.1471
|
[14] |
Wu Yan-Dong, Xie Hong-Bo. A new method to recognize determinism in time series. Acta Physica Sinica,
2007, 56(11): 6294-6300.
doi: 10.7498/aps.56.6294
|
[15] |
Lei Min, Meng Guang, Feng Zheng-Jin. Detecting the nonlinearity for time series sampled from continuous dynamic systems. Acta Physica Sinica,
2005, 54(3): 1059-1063.
doi: 10.7498/aps.54.1059
|
[16] |
Wang Hong-Wei, Ma Guang-Fu. Prediction of chaotic time series based on fuzzy model. Acta Physica Sinica,
2004, 53(10): 3293-3297.
doi: 10.7498/aps.53.3293
|
[17] |
LIU YAO-ZONG, WEN XI-SEN, HU NIAO-QING. A NEW METHOD OF SURROGATE DATA TEST FOR LINEAR NON-GAUSSIAN TIME SERIES. Acta Physica Sinica,
2001, 50(7): 1241-1247.
doi: 10.7498/aps.50.1241
|
[18] |
LIU YAO-ZONG, WEN XI-SEN, HU NIAO-QING. SURROGATE DATA TEST FOR THE LINEAR NON-GAUSSIAN TIME SERIES WITH NON-MINIMUM PHASE. Acta Physica Sinica,
2001, 50(4): 633-637.
doi: 10.7498/aps.50.633
|
[19] |
Zhang Jiashu, Xiao Xianchi. . Acta Physica Sinica,
2000, 49(3): 403-408.
doi: 10.7498/aps.49.403
|
[20] |
TIAN YU-CHU. DELAY IDENTIFICATION IN CHAOTIC TIME SERIES. Acta Physica Sinica,
1997, 46(3): 442-447.
doi: 10.7498/aps.46.442
|