[1] |
Fang Wen-Yu, Zhang Peng-Cheng, Zhao Jun, Kang Wen-Bin. Electronic structure and photocatalytic properties of H, F modified two-dimensional GeTe. Acta Physica Sinica,
2020, 69(5): 056301.
doi: 10.7498/aps.69.20191391
|
[2] |
Liu Xiao-Wei, Zhang Ke-Ye. Effective-mass approach to controlling double-well dynamics of atomic Bose-Einstein condensates. Acta Physica Sinica,
2017, 66(16): 160301.
doi: 10.7498/aps.66.160301
|
[3] |
Xu Cong-Hui, Zhang Guo-Hua, Qian Zhi-Heng, Zhao Xue-Dan. Effective mass spectrum and dissipation power of granular material under the horizontal and vertical excitation. Acta Physica Sinica,
2016, 65(23): 234501.
doi: 10.7498/aps.65.234501
|
[4] |
Li Li-Ming, Ning Feng, Tang Li-Ming. First-principles study of effects of quantum confinement and strain on the electronic properties of GaSb nanowires. Acta Physica Sinica,
2015, 64(22): 227303.
doi: 10.7498/aps.64.227303
|
[5] |
Yu Tian, Zhang Guo-Hua, Sun Qi-Cheng, Zhao Xue-Dan, Ma Wen-Bo. Dynamic effective mass and power dissipation of the granular material under vertical vibration. Acta Physica Sinica,
2015, 64(4): 044501.
doi: 10.7498/aps.64.044501
|
[6] |
Jin Zhao, Qiao Li-Ping, Guo Chen, Wang Jiang-An, Richard C. Liu. Electronic conductivity effective masses along arbitrary directional channel in uniaxial strained Si(001). Acta Physica Sinica,
2013, 62(5): 058501.
doi: 10.7498/aps.62.058501
|
[7] |
Dai Xian-Ying, Yang Cheng, Song Jian-Jun, Zhang He-Ming, Hao Yue, Zheng Ruo-Chuan. Anisotropy and isotropy of hole effective mass of strained Ge. Acta Physica Sinica,
2012, 61(23): 237102.
doi: 10.7498/aps.61.237102
|
[8] |
Song Jian-Jun, Zhang He-Ming, Hu Hui-Yong, Xuan Rong-Xi, Dai Xian-Ying. Model of hole effective mass of strained Si1-xGex/(111)Si. Acta Physica Sinica,
2010, 59(1): 579-582.
doi: 10.7498/aps.59.579
|
[9] |
Zhao Li-Xia, Zhang He-Ming, Hu Hui-Yong, Dai Xian-Ying, Xuan Rong-Xi. Model of electronical conductivity effective mass of strained Si. Acta Physica Sinica,
2010, 59(9): 6545-6548.
doi: 10.7498/aps.59.6545
|
[10] |
Zhao Qi-Di, Zhang Zhen-Hua. Electronic transport properties of single-walled carbon nanotubes under a low bias. Acta Physica Sinica,
2010, 59(11): 8098-8103.
doi: 10.7498/aps.59.8098
|
[11] |
Song Jian-Jun, Zhang He-Ming, Xuan Rong-Xi, Hu Hui-Yong, Dai Xian-Ying. Anisotropy of hole effective mass of strained Si/(001)Si1-xGex. Acta Physica Sinica,
2009, 58(7): 4958-4961.
doi: 10.7498/aps.58.4958
|
[12] |
Wu Hui-Ting, Wang Hai-Long, Jiang Li-Ming. Effect of different effective mass and electric field on the electronic structure in GaN/AlxGa1-xN spherical quantum dot. Acta Physica Sinica,
2009, 58(1): 465-470.
doi: 10.7498/aps.58.465
|
[13] |
Wang Chuan-Dao. Electronic structure in GaAs/AlxGa1-xAs spherical quantum dots. Acta Physica Sinica,
2008, 57(2): 1091-1096.
doi: 10.7498/aps.57.1091
|
[14] |
Duan He, Chen Xiao-Shuang, Sun Li-Zhong, Zhou Xiao-Hao, Lu Wei. First-principle calculations of structural properties and effective-mass of zinc-blende ZnTe and CdTe. Acta Physica Sinica,
2005, 54(11): 5293-5300.
doi: 10.7498/aps.54.5293
|
[15] |
Cai Chang-Ying, Ren Zhong-Zhou, Ju Guo-Xing. Analytical solutions of the three-dimensional Schr?dinger equation with an exponentially changing effective mass. Acta Physica Sinica,
2005, 54(6): 2528-2533.
doi: 10.7498/aps.54.2528
|
[16] |
Eerdunchaolu, Li Shu-Shen, Xiao Jing-Lin. Effects of lattice vibration on the effective mass of quasi-two-dimensional strong-coupling polaron. Acta Physica Sinica,
2005, 54(9): 4285-4293.
doi: 10.7498/aps.54.4285
|
[17] |
Zhao Guo-Zhong, Pan Shao-Hua, Yang Guo-Zhen. . Acta Physica Sinica,
1995, 44(8): 1335-1343.
doi: 10.7498/aps.44.1335
|
[18] |
ZHANG YAO-ZHONG. EFFECTIVE LAGRANGIAN AND MASS GENERATION OF THE CHIRAL QCD2 MODEL. Acta Physica Sinica,
1987, 36(11): 1513-1518.
doi: 10.7498/aps.36.1513
|
[19] |
GU SHI-WEI. THE TEMPERATURE DEPENDENCE OF THE FRANKEL EXCITON EFFECTIVE MASS. Acta Physica Sinica,
1980, 29(4): 517-523.
doi: 10.7498/aps.29.517
|
[20] |
GU SHI-WEI. THE TEMPERATURE DEPENDENCE OF THE POLARON EFFECTIVE MASS. Acta Physica Sinica,
1980, 29(5): 609-617.
doi: 10.7498/aps.29.609
|