| [1] | Chen Xiang-Wei, Zhao Yong-Hong, Liu Chang. Conformal invariance and conserved quantity for holonomic mechanical systems with variable mass. Acta Physica Sinica,
												2009, 58(8): 5150-5154.
												
												doi: 10.7498/aps.58.5150 | 
							
									| [2] | Xia Li-Li, Li Yuan-Cheng, Wang Xian-Jun. Non-Noether conserved quantities for nonholonomic controllable mechanical systems with relativistic rotational variable mass. Acta Physica Sinica,
												2009, 58(1): 28-33.
												
												doi: 10.7498/aps.58.28 | 
							
									| [3] | Huang Xiao-Hong, Zhang Xiao-Bo, Shi Shen-Yang. The Mei symmetry of discrete difference sequence mechanical system with variable mass. Acta Physica Sinica,
												2008, 57(10): 6056-6062.
												
												doi: 10.7498/aps.57.6056 | 
							
									| [4] | Liu Chang, Liu Shi-Xing, Mei Feng-Xiang, Guo Yong-Xin. Conformal invariance and Hojman conserved quantities of generalized Hamilton systems. Acta Physica Sinica,
												2008, 57(11): 6709-6713.
												
												doi: 10.7498/aps.57.6709 | 
							
									| [5] | Liu Chang, Mei Feng-Xiang, Guo Yong-Xin. Conformal symmetry and Hojman conserved quantity of Lagrange system. Acta Physica Sinica,
												2008, 57(11): 6704-6708.
												
												doi: 10.7498/aps.57.6704 | 
							
									| [6] | Liu Yang-Kui, Fang Jian-Hui. Two types of conserved quantities of Lie-Mei symmetry for a variable mass system in phase space. Acta Physica Sinica,
												2008, 57(11): 6699-6703.
												
												doi: 10.7498/aps.57.6699 | 
							
									| [7] | Xia Li-Li, Li Yuan-Cheng. Non-Noether conserved quantity for relativistic nonholonomic controllable mechanical system with variable mass. Acta Physica Sinica,
												2008, 57(8): 4652-4656.
												
												doi: 10.7498/aps.57.4652 | 
							
									| [8] | Shi Shen-Yang, Fu Jing-Li, Chen Li-Qun. Lie symmetries of discrete Lagrange systems. Acta Physica Sinica,
												2007, 56(6): 3060-3063.
												
												doi: 10.7498/aps.56.3060 | 
							
									| [9] | Zhang Peng-Yu, Fang Jian-Hui. Lie symmetry and non-Noether conserved quantities of variable mass Birkhoffian system. Acta Physica Sinica,
												2006, 55(8): 3813-3816.
												
												doi: 10.7498/aps.55.3813 | 
							
									| [10] | Qiao Yong-Fen, Zhao Shu-Hong. Form invariance and non-Noether conserved quantity of generalized Raitzin’s canonical equations of non-conservative system. Acta Physica Sinica,
												2006, 55(2): 499-503.
												
												doi: 10.7498/aps.55.499 | 
							
									| [11] | Ge Wei-Kuan. Effects of mass variation on form invariance and conserved quantity of mechanical systems. Acta Physica Sinica,
												2005, 54(6): 2478-2481.
												
												doi: 10.7498/aps.54.2478 | 
							
									| [12] | Qiao Yong-Fen, Li Ren-Jie, Sun Dan-Na. Hojman’s conservation theorems for Raitzin’s canonical equations of motion of nonlinear nonholonomic systems. Acta Physica Sinica,
												2005, 54(2): 490-495.
												
												doi: 10.7498/aps.54.490 | 
							
									| [13] | Fang Jian-Hui, Zhang Peng-Yu. The conserved quantity of Hojman for mechanicalsystems with variable mass in phase space. Acta Physica Sinica,
												2004, 53(12): 4041-4044.
												
												doi: 10.7498/aps.53.4041 | 
							
									| [14] | Xu Xue-Jun, Mei Feng-Xiang, Qin Mao-Chang. A nonNoether conserved quantity constructed using form invariance for Nielsen equation of a non-conservativemechanical system. Acta Physica Sinica,
												2004, 53(12): 4021-4025.
												
												doi: 10.7498/aps.53.4021 | 
							
									| [15] | Luo Shao-Kai, Guo Yong-Xin, Mei Feng-Xiang. Form invariance and Hojman conserved quantity for nonholonomic mechanical systems. Acta Physica Sinica,
												2004, 53(8): 2413-2418.
												
												doi: 10.7498/aps.53.2413 | 
							
									| [16] | Luo Shao-Kai, Guo Yong-Xin, Mei Feng-Xiang. Noether symmetry and Hojman conserved quantity for nonholonomic mechanical systems. Acta Physica Sinica,
												2004, 53(5): 1270-1275.
												
												doi: 10.7498/aps.53.1270 | 
							
									| [17] | Qiao Yong-Fen, Zhao Shu-Hong, Li Ren-Jie. Non Noether conserved quantity of the holonomic mechanical systems in terms of quasi-coordinates ——An extension of Hojman theorem. Acta Physica Sinica,
												2004, 53(7): 2035-2039.
												
												doi: 10.7498/aps.53.2035 | 
							
									| [18] | Luo Shao-Kai, Mei Feng-Xiang. A non-Noether conserved quantity, i.e. Hojman conserved quantity, for nonholonomic mechanical systems. Acta Physica Sinica,
												2004, 53(3): 6-10.
												
												doi: 10.7498/aps.53.6 | 
							
									| [19] | Fang Jian-Hui, Liao Yong-Pan, Zhang Jun. Non-Noether conserved quantity of a general form for mechanical systems with variable mass. Acta Physica Sinica,
												2004, 53(12): 4037-4040.
												
												doi: 10.7498/aps.53.4037 | 
							
									| [20] | Qiao Yong-Fen, Zhao Shu-Hong. . Acta Physica Sinica,
												2001, 50(1): 1-7.
												
												doi: 10.7498/aps.50.1 |