[1] |
Wang Fei-Fei, Fang Jian-Hui, Wang Ying-Li, Xu Rui-Li. Noether symmetry and Mei symmetry of a discrete holonomic mechanical system with variable mass. Acta Physica Sinica,
2014, 63(17): 170202.
doi: 10.7498/aps.63.170202
|
[2] |
Zhang Yi, Jin Shi-Xin. Noether symmetries of dynamics for non-conservative systems with time delay. Acta Physica Sinica,
2013, 62(23): 234502.
doi: 10.7498/aps.62.234502
|
[3] |
Xu Rui-Li, Fang Jian-Hui, Zhang Bin. The Noether conserved quantity of Lie symmetry for discrete difference sequence Hamilton system with variable mass. Acta Physica Sinica,
2013, 62(15): 154501.
doi: 10.7498/aps.62.154501
|
[4] |
Wang Xiao-Xiao, Sun Xian-Ting, Zhang Mei-Ling, Xie Yin-Li, Jia Li-Qun. Noether symmetry and Noether conserved quantity of Nielsen equation in a dynamical system of the relative motion with nonholonomic constraint of Chetaev's type. Acta Physica Sinica,
2012, 61(6): 064501.
doi: 10.7498/aps.61.064501
|
[5] |
Gu Shu-Long, Zhang Hong-Bin. Noether symmetry and the Hojman conserved quantity of the Kepler equation. Acta Physica Sinica,
2010, 59(2): 716-718.
doi: 10.7498/aps.59.716
|
[6] |
Cui Jian-Xin, Gao Hai-Bo, Hong Wen-Xue. Mei symmetries and the Noether conserved quantities of super-thin elastic rod. Acta Physica Sinica,
2009, 58(11): 7426-7430.
doi: 10.7498/aps.58.7426
|
[7] |
Shi Shen-Yang, Huang Xiao-Hong, Zhang Xiao-Bo, Jin Li. The Lie symmetry and Noether conserved quantity of discrete difference variational Hamilton system. Acta Physica Sinica,
2009, 58(6): 3625-3631.
doi: 10.7498/aps.58.3625
|
[8] |
Zhang Yi. Noether’s theory for Birkhoffian systems in the event space. Acta Physica Sinica,
2008, 57(5): 2643-2648.
doi: 10.7498/aps.57.2643
|
[9] |
Lou Zhi_Mei. The study of symmetries and conserved quantities for one class of linearly coupled multidimensional freedom systems. Acta Physica Sinica,
2007, 56(5): 2475-2478.
doi: 10.7498/aps.56.2475
|
[10] |
Wu Hui-Bin, Mei Feng-Xiang. Two comprehensions on Noether symmetry. Acta Physica Sinica,
2006, 55(8): 3825-3828.
doi: 10.7498/aps.55.3825
|
[11] |
Gu Shu-Long, Zhang Hong-Bin. Mei symmetry, Noether symmetry and Lie symmetry of an Emden system. Acta Physica Sinica,
2006, 55(11): 5594-5597.
doi: 10.7498/aps.55.5594
|
[12] |
Fang Jian-Hui, Ding Ning, Wang Peng. Noether-Lie symmetry of non-holonomic mechanical system. Acta Physica Sinica,
2006, 55(8): 3817-3820.
doi: 10.7498/aps.55.3817
|
[13] |
Zhang Yi. Symmetries and Mei conserved quantities for systems of generalized classical mechanics. Acta Physica Sinica,
2005, 54(7): 2980-2984.
doi: 10.7498/aps.54.2980
|
[14] |
Gu Shu-Long, Zhang Hong-Bin. Mei symmetry, Noether symmetry and Lie symmetry of a Vacco system. Acta Physica Sinica,
2005, 54(9): 3983-3986.
doi: 10.7498/aps.54.3983
|
[15] |
Zhang Yi, Mei Feng-Xiang. Effects of non-conservative forces and nonholonomic constraints on Noether symmetries of a Lagrange system. Acta Physica Sinica,
2004, 53(3): 661-668.
doi: 10.7498/aps.53.661
|
[16] |
Luo Shao-Kai, Guo Yong-Xin, Mei Feng-Xiang. Noether symmetry and Hojman conserved quantity for nonholonomic mechanical systems. Acta Physica Sinica,
2004, 53(5): 1270-1275.
doi: 10.7498/aps.53.1270
|
[17] |
Zhang Yi, Mei Feng-Xiang. Effects of constraints on Noether symmetries and conserved quantities in a Birkhoffian system. Acta Physica Sinica,
2004, 53(8): 2419-2423.
doi: 10.7498/aps.53.2419
|
[18] |
Fang Jian-Hui, Yan Xiang-Hong, Chen Pei-Sheng. Form invariance and Noether symmetry of a relativistic mechanical system. Acta Physica Sinica,
2003, 52(7): 1561-1564.
doi: 10.7498/aps.52.1561
|
[19] |
Luo Shao-Kai. Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian system. Acta Physica Sinica,
2003, 52(12): 2941-2944.
doi: 10.7498/aps.52.2941
|
[20] |
Ge Wei-Kuan. . Acta Physica Sinica,
2002, 51(5): 939-942.
doi: 10.7498/aps.51.939
|