[1] |
YUAN Xiaojuan. Effects of link-impurity on spin dynamics of one-dimensional quantum Ising model. Acta Physica Sinica,
2025, 74(3): 037501.
doi: 10.7498/aps.74.20241390
|
[2] |
Sun Zhen-Hui, Hu Li-Zhen, Xu Yu-Liang, Kong Xiang-Mu. Quantum coherence and mutual information of mixed spin-(1/2, 5/2) Ising-XXZ model on quasi-one-dimensional lattices. Acta Physica Sinica,
2023, 72(13): 130301.
doi: 10.7498/aps.72.20230381
|
[3] |
Yuan Xiao-Juan. Effects of trimodal random magnetic field on spin dynamics of quantum Ising chain. Acta Physica Sinica,
2023, 72(8): 087501.
doi: 10.7498/aps.72.20230046
|
[4] |
Yuan Xiao-Juan, Wang Hui, Zhao Bang-Yu, Zhao Jing-Fen, Ming Jing, Geng Yan-Lei, Zhang Kai-Yu. Effects of random longitudinal magnetic field on dynamics of one-dimensional quantum Ising model. Acta Physica Sinica,
2021, 70(19): 197501.
doi: 10.7498/aps.70.20210631
|
[5] |
Liu Rui-Fen, Hui Zhi-Xin, Xiong Ke-Zhao, Zeng Chun-Hua. Correlated noise induced non-equilibrium phase transition in surface catalytic reaction model. Acta Physica Sinica,
2018, 67(16): 160501.
doi: 10.7498/aps.67.20180250
|
[6] |
Zhang Yi, Jin Shi-Xin. Noether symmetries of dynamics for non-conservative systems with time delay. Acta Physica Sinica,
2013, 62(23): 234502.
doi: 10.7498/aps.62.234502
|
[7] |
Ruan Peng, Xie Ji-Jiang, Pan Qi-Kun, Zhang Lai-Ming, Guo Jin. Dynamical model of non-chain pulsed DF laser. Acta Physica Sinica,
2013, 62(9): 094208.
doi: 10.7498/aps.62.094208
|
[8] |
Gao Ji-Hua, Xie Wei-Miao, Gao Jia-Zhen, Yang Hai-Peng, Ge Zao-Chuan. Amplitude spiral wave in coupled complex Ginzburg-Landau equation. Acta Physica Sinica,
2012, 61(13): 130506.
doi: 10.7498/aps.61.130506
|
[9] |
Shao Yuan-Zhi, Zhong Wei-Rong, Lin Guang-Ming, Li Jian-Can. Stochastic resonance of an Ising spin system driven by stochastic external field. Acta Physica Sinica,
2004, 53(9): 3157-3164.
doi: 10.7498/aps.53.3157
|
[10] |
Shao Yuan-Zhi, Zhong Wei-Rong, Lin Guang-Ming. Nonequilibrium dynamic phase transition of an Ising spin system driven by various oscillating field. Acta Physica Sinica,
2004, 53(9): 3165-3170.
doi: 10.7498/aps.53.3165
|
[11] |
Gong Long-Yan, Tong Pei-Qing. Dynamical phase transition and self-organized critical phenomena in the two-dim ensional gas lattice model. Acta Physica Sinica,
2003, 52(11): 2757-2761.
doi: 10.7498/aps.52.2757
|
[12] |
SHAO YUAN-ZHI, LAN TU, LIN GUANG-MING. SCALING HYSTERESIS OF DYNAMICAL TRANSITION OF DILUTED HEISENBERG SPIN SYSTEM . Acta Physica Sinica,
2001, 50(5): 948-952.
doi: 10.7498/aps.50.948
|
[13] |
SHAO YUAN-ZHI, LAN TU, LIN GUANG-MING. DYNAMICAL TRANSITION AND TRICRITICAL POINTS OF 3D KINETIC ISING SPIN SYSTEM . Acta Physica Sinica,
2001, 50(5): 942-947.
doi: 10.7498/aps.50.942
|
[14] |
WU MU-YING, YE AI-JUN, LI ZI-BING, ZENG WEN-GUANG. SHORT-TIME CRITICAL DYNAMIC PROCESS OF TWO-LAYER ISING MODEL. Acta Physica Sinica,
2000, 49(6): 1168-1170.
doi: 10.7498/aps.49.1168
|
[15] |
GAO HONG, WANG XUAN-ZHANG, Lü SHU-CHEN. PHASE TRANSITION OF A PERIODICALLY DILUTED ISING MAGNET. Acta Physica Sinica,
1996, 45(12): 2054-2060.
doi: 10.7498/aps.45.2054
|
[16] |
ZHANG GUO-MIN, YANG CHUAN-ZHANG. MONTE CARLO STUDY OF THE ORDER OF PHASE TRANSITION OF A MULTISPIN INTERACTIONS ISING MODEL. Acta Physica Sinica,
1993, 42(10): 1680-1683.
doi: 10.7498/aps.42.1680
|
[17] |
LI FU-BIN. CONSTITUTION OF THE MODEL OF NONEQUILIBRIUM PHASE TRANSITION BY THE CELLULAR AUTOMATA APPROACH. Acta Physica Sinica,
1992, 41(11): 1837-1841.
doi: 10.7498/aps.41.1837
|
[18] |
LI FU-BIN. LONG RANGE CORRELATIONS FOR MICROSCOPIC STOCHA-STIC DYNAMICS IN A NONEQUILIBRIUM STEADY STATE (Ⅰ)——CONSTRUCTION OF THE THEORY OF FLUCTUATING HYDRODYNAMICS IN TERMS OF A STOCHASTIC LATTICE GAS MODEL. Acta Physica Sinica,
1990, 39(3): 381-390.
doi: 10.7498/aps.39.381
|
[19] |
LI FU-BIN. LONG RANGE CORRELATIONS FOR MICROSCOPIC STOCHA-STIC DYNAMICS IN A NONEQUILIBRIUM STEADY STATE (Ⅱ)——PROVE FOR THE CORRECTNESS OF A MICROSCOPIC STOCHASTIC DYNAMICALMODEL. Acta Physica Sinica,
1990, 39(3): 391-398.
doi: 10.7498/aps.39.391
|
[20] |
ZHOU GUANG-ZHAO, SU ZHAO-BIN, HAO BAI-LIN, YU LU. NONEQUILIBRIUM STATISTICAL FIELD THEORY AND CRITICAL DYNAMICS (Ⅰ)——GENERALIZED LANGEVIN EQUATION. Acta Physica Sinica,
1980, 29(8): 961-968.
doi: 10.7498/aps.29.961
|