[1] |
Cao Bao-Feng, Li Peng, Li Xiao-Qiang, Zhang Xue-Qin, Ning Wang-Shi, Liang Rui, Li Xin, Hu Miao, Zheng Yi. Detection and parameter estimation of weak pulse signal based on strongly coupled Duffing oscillators. Acta Physica Sinica,
2019, 68(8): 080501.
doi: 10.7498/aps.68.20181856
|
[2] |
Chen Xin, Yao Hong, Zhao Jing-Bo, Zhang Shuai, He Zi-Hou, Jiang Juan-Na. Band gap of structure coupling Helmholtz resonator with elastic oscillator. Acta Physica Sinica,
2019, 68(8): 084302.
doi: 10.7498/aps.68.20182102
|
[3] |
Zhang Wu-Fan, Zhao Qiang. Hopf bifurcation and chaos in the solar-forced El Niño /Southern Oscillation recharge oscillator model. Acta Physica Sinica,
2014, 63(21): 210201.
doi: 10.7498/aps.63.210201
|
[4] |
Rong Hai_Wu, Wang Xiang-Dong, Xu Wei, Fang Tong. Bifurcations of safe basins and chaos in Flickering oscillator under multi-frequency harmonic and bounded noise excitation. Acta Physica Sinica,
2008, 57(3): 1506-1513.
doi: 10.7498/aps.57.1506
|
[5] |
Rong Hai-Wu, Wang Xiang-Dong, Xu Wei, Fang Tong. Bifurcations of safe basins and chaos in softening Duffing oscillator under harmonic and bounded noise excitation. Acta Physica Sinica,
2007, 56(4): 2005-2011.
doi: 10.7498/aps.56.2005
|
[6] |
TONG PEI-QING, ZHAO CHAN-DONG. . Acta Physica Sinica,
1995, 44(1): 35-42.
doi: 10.7498/aps.44.35
|
[7] |
YANG GUANG-CAN. THE NONLINEAR THEORY OF INTERACTION BETWEEN LIGHT AND MATTER DESCRIBED BY q-DEFOR- MED OSCILLATOR MODEL. Acta Physica Sinica,
1994, 43(4): 521-529.
doi: 10.7498/aps.43.521
|
[8] |
GU SI-HONG, LI BAI-WEN. CALCULATIONS OF OSCILLATOR STRENGTHS AND LIFETI-MES OF Mg BY MODELPOTENTIAL WAVEFUNCTIONS. Acta Physica Sinica,
1993, 42(7): 1025-1030.
doi: 10.7498/aps.42.1025
|
[9] |
CHEN ZHI-RONG, CHEN FEI-WU, YUAN HUI, LI XIAO-HUI, ZHAO LIAN-QING, NIU WEN-ZHANG, CHEN BING-XING, TENG SHU-LAN. CHAOTIC DIMENSIONS OF FORCED OREGONATOR OSCILLATOR AND CUBIC MAP. Acta Physica Sinica,
1992, 41(7): 1081-1086.
doi: 10.7498/aps.41.1081
|
[10] |
Gu Si-yuan;Li Bai-wen. CALCULATIONS OF CSCILLATOR STRENGTHS AND LIFETIMES OF Mg BY MODELPOTENTIAL WAVEFUNCTIONS. Acta Physica Sinica,
1991, 40(7): 1025-1030.
doi: 10.7498/aps.40.1025
|
[11] |
YAN HONG, CHANG ZHE, GUO HAN-YING. q-ROTATING OSCILLATOR MODEL (I)——q-Oscillator and Vibrational Spectra of Diatomic Molecules. Acta Physica Sinica,
1991, 40(9): 1377-1387.
doi: 10.7498/aps.40.1377
|
[12] |
WANG GUANG-RUI, CHEN SHI-GANG. CHAOTIC MEASURES AND SCALING LAWS FOR SUPERCRITICAL CIRCLE MAP. Acta Physica Sinica,
1990, 39(11): 1705-1713.
doi: 10.7498/aps.39.1705
|
[13] |
ZHANG ZHONG-JIAN, CHEN SHI-GANG. SYMBOLIC DYNAMICS OF THE CIRCLE MAP. Acta Physica Sinica,
1989, 38(1): 1-8.
doi: 10.7498/aps.38.1
|
[14] |
HOU BO-YU, HOU BO-YUAN, WANG PEI. THE COHOMOLOGY IN TRANSLATION GROUP AND KRONECKER MAPPING. Acta Physica Sinica,
1986, 35(6): 829-832.
doi: 10.7498/aps.35.829
|
[15] |
WANG GUANG-RUI, CHEN SHI-GANG, HAO BAI-LIN. KOLMOGOROV CAPACITY AND LYAPUNOV DIMENSION OF STRANGE ATTRACTORS OF FORCED BRUSSELATOR. Acta Physica Sinica,
1984, 33(9): 1246-1254.
doi: 10.7498/aps.33.1246
|
[16] |
WANG GUANG-RUI, HAO BAI-LIN. TRANSITION FROM QUASIPERIODIC REGIME TO CHAOS IN THE FORCED BRUSSELATOR. Acta Physica Sinica,
1984, 33(9): 1321-1325.
doi: 10.7498/aps.33.1321
|
[17] |
WANG GUANG-RUI, ZHANG SHU-YU, HAO BAI-LIN. U-SEQUENCE OF PERIODIC SOLUTIONS IN THE FORCED BRUSSELATOR. Acta Physica Sinica,
1984, 33(7): 1008-1016.
doi: 10.7498/aps.33.1008
|
[18] |
HAO BAI-LIN, ZHANG SHU-YU. SUBHARMONIC STROBOSCOPIC SAMPLING METHOD FOR STUDY OF PERIOD-DOUBLING BIFURCATION AND CHAOTIC PHENOMENA IN FORCED NONLINEAR OSCILLATORS. Acta Physica Sinica,
1983, 32(2): 198-208.
doi: 10.7498/aps.32.198
|
[19] |
ZHANG JI-YUE, GUO ZHI-AN. SPHERICALLY SYMMETRIC STRUCTURES OF THE BRUSSELATOR. Acta Physica Sinica,
1983, 32(12): 1574-1585.
doi: 10.7498/aps.32.1574
|
[20] |
WANG GUANG-RUI, CHEN SHI-GANG, HAO BAI-LIN. INTERMITTENT CHAOS IN THE FORCED BRUSSELATOR. Acta Physica Sinica,
1983, 32(9): 1139-1148.
doi: 10.7498/aps.32.1139
|