[1] |
Chen Zhang-Yao, Xue Zeng-Hong, Zhang Chun, Ji Ying, Bi Qin-Sheng. Oscillation behaviors and mechanism of Rayleigh oscillator with periodic switches. Acta Physica Sinica,
2014, 63(1): 010504.
doi: 10.7498/aps.63.010504
|
[2] |
Zhang Wu-Fan, Zhao Qiang. Hopf bifurcation and chaos in the solar-forced El Niño /Southern Oscillation recharge oscillator model. Acta Physica Sinica,
2014, 63(21): 210201.
doi: 10.7498/aps.63.210201
|
[3] |
Tan Ping-An, Zhang Bo, Qiu Dong-Yuan. Stabilization of chaotic behaviour and spiking current in thyristor with time-delayed feedback control. Acta Physica Sinica,
2010, 59(8): 5299-5306.
doi: 10.7498/aps.59.5299
|
[4] |
Bao Gang, Narenmandula, Tubuxin, Eredencang. Dynamic behavior of complete synchronization of coupled chaotic oscillators. Acta Physica Sinica,
2007, 56(4): 1971-1974.
doi: 10.7498/aps.56.1971
|
[5] |
Tang Jia-Shi, Xiao Han. Amplitude control of limit cycle of coupled van der Pol oscillator. Acta Physica Sinica,
2007, 56(1): 101-105.
doi: 10.7498/aps.56.101
|
[6] |
Ma Wen-Qi, Yang Cheng-Hui. Hopf bifurcation from synchronous chaos and its circuit simulation in a coupled nonlinear oscillator system. Acta Physica Sinica,
2005, 54(3): 1064-1070.
doi: 10.7498/aps.54.1064
|
[7] |
Hao Jian-Hong, Li Wei. Phase synchronization of R?ssler in two coupled harmonic oscillators. Acta Physica Sinica,
2005, 54(8): 3491-3496.
doi: 10.7498/aps.54.3491
|
[8] |
Lu Yun-Qing, Wang Wen-Xiu, He Da-Ren. Crisis of transient chaos in an electronic relaxation oscillator. Acta Physica Sinica,
2003, 52(5): 1079-1084.
doi: 10.7498/aps.52.1079
|
[9] |
ZHANG XU, SHEN KE. CONTROLLING SPATIOTEMPORAL CHAOS IN COUPLED MAP LATTICE SYSTEMS. Acta Physica Sinica,
2001, 50(4): 624-628.
doi: 10.7498/aps.50.624
|
[10] |
Zhou Tian-Shou, Zhang Suo-Chun. . Acta Physica Sinica,
2001, 50(1): 8-12.
doi: 10.7498/aps.50.8
|
[11] |
MA WEN-QI, YANG JUN-ZHONG, LIU WEN-JI, BAO GANG, HU GANG. GENERALIZED WINDING NUMBER OF CHAOTIC OSCILLATORS AND HOPF BIFURCATION FROM SYNCHRONOUS CHAOS. Acta Physica Sinica,
1999, 48(5): 787-794.
doi: 10.7498/aps.48.787
|
[12] |
CHEN ZHI-RONG, CHEN FEI-WU, YUAN HUI, LI XIAO-HUI, ZHAO LIAN-QING, NIU WEN-ZHANG, CHEN BING-XING, TENG SHU-LAN. CHAOTIC DIMENSIONS OF FORCED OREGONATOR OSCILLATOR AND CUBIC MAP. Acta Physica Sinica,
1992, 41(7): 1081-1086.
doi: 10.7498/aps.41.1081
|
[13] |
YU XI-LING, JIN HUI-QIANG, YAN GUANG-HUI, WANG GUANG-RUI, CHEN SHI-GANG. FORCED BRUSSELATOR AND CIRCULAR MAPPING. Acta Physica Sinica,
1990, 39(3): 351-358.
doi: 10.7498/aps.39.351
|
[14] |
HU GANG, A. GRECOS. THE EXACT SOLUTION OF RELAXATION PROCESS OF AN OSCILLATOR IN A THERMO-BATH. Acta Physica Sinica,
1985, 34(1): 105-111.
doi: 10.7498/aps.34.105
|
[15] |
WANG GUANG-RUI, CHEN SHI-GANG, HAO BAI-LIN. KOLMOGOROV CAPACITY AND LYAPUNOV DIMENSION OF STRANGE ATTRACTORS OF FORCED BRUSSELATOR. Acta Physica Sinica,
1984, 33(9): 1246-1254.
doi: 10.7498/aps.33.1246
|
[16] |
WANG GUANG-RUI, ZHANG SHU-YU, HAO BAI-LIN. U-SEQUENCE OF PERIODIC SOLUTIONS IN THE FORCED BRUSSELATOR. Acta Physica Sinica,
1984, 33(7): 1008-1016.
doi: 10.7498/aps.33.1008
|
[17] |
WANG GUANG-RUI, HAO BAI-LIN. TRANSITION FROM QUASIPERIODIC REGIME TO CHAOS IN THE FORCED BRUSSELATOR. Acta Physica Sinica,
1984, 33(9): 1321-1325.
doi: 10.7498/aps.33.1321
|
[18] |
ZHANG JI-YUE, GUO ZHI-AN. SPHERICALLY SYMMETRIC STRUCTURES OF THE BRUSSELATOR. Acta Physica Sinica,
1983, 32(12): 1574-1585.
doi: 10.7498/aps.32.1574
|
[19] |
HAO BAI-LIN, ZHANG SHU-YU. SUBHARMONIC STROBOSCOPIC SAMPLING METHOD FOR STUDY OF PERIOD-DOUBLING BIFURCATION AND CHAOTIC PHENOMENA IN FORCED NONLINEAR OSCILLATORS. Acta Physica Sinica,
1983, 32(2): 198-208.
doi: 10.7498/aps.32.198
|
[20] |
WANG GUANG-RUI, CHEN SHI-GANG, HAO BAI-LIN. INTERMITTENT CHAOS IN THE FORCED BRUSSELATOR. Acta Physica Sinica,
1983, 32(9): 1139-1148.
doi: 10.7498/aps.32.1139
|