搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于室温里德伯原子四波混频的微波-光波转换特性

李芳

引用本文:
Citation:

基于室温里德伯原子四波混频的微波-光波转换特性

李芳

Microwave-to-optics conversion characteristics based on four-wave mixing of Rydberg atoms at room temperature

LI Fang
cstr: 32037.14.aps.74.20250706
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 微波-光波转换是混合量子网络的核心技术, 然而热原子系综中的多普勒展宽效应常常成为限制转换效率的瓶颈. 本文提出基于室温里德伯原子的四波混频转换新机制, 采用密度矩阵法和微扰法结合麦克斯韦方程, 推导出双梯形四能级四波混频过程中表征微波场与光场之间相干系数的解析表达式, 并由此获得四波混频转换效率的解析表达式. 利用铯蒸气作为介质, 详细分析了四波混频效率的传播特性, 并探讨了激光场强度和多普勒效应对转换效率的影响. 研究结果表明, 原子的热运动引起的失谐效应会降低共振耦合效率, 当多普勒频率小于自然线宽时, 转换效率可显著提高. 本研究不仅为室温条件下的微波-光波转换提供了新的理论指导和实验方案, 而且对于推动量子信息技术的进步具有重要意义.
    Microwave-to-optics conversion is a core technology for hybrid quantum networks, enabling the integration of microwave and optical frequency domains essential for quantum communication and quantum information processing. However, the Doppler broadening effect in thermal atomic ensembles often severely limits the conversion efficiency. This study aims to propose a novel mechanism for microwave-to-optics conversion using four-wave mixing (FWM) in room-temperature Rydberg atoms, addressing the challenges posed by Doppler broadening and providing a theoretical framework for practical applications. We develop a theoretical model based on the coupled Maxwell-Bloch equations to describe the FWM process in a symmetric double-ladder four-level system. The density matrix method and perturbation method combined with Maxwell’s equations are used to derive an analytical expression for the coherence coefficient between the microwave field and the optical field. This coherence coefficient characterizes the energy transfer between the microwave and optical fields and is used to obtain an analytical expression for the FWM conversion efficiency. We use cesium vapor as a medium to analyze the propagation characteristics of the FWM efficiency and explore the effects of laser field intensity and the Doppler effect on the conversion efficiency. Our analysis reveals that the detuning effect caused by the thermal motion of atoms significantly reduces the resonance coupling efficiency. Specifically, when the Doppler frequency is lower than the natural linewidth, the conversion efficiency can be notably improved. In a Doppler-free environment, the conversion efficiency approaches unity at an optimal propagation distance. In contrast, in room-temperature cesium vapor (300 K), the conversion efficiency is significantly reduced due to Doppler broadening. However, by cooling the atoms to microkelvin temperatures, the Doppler broadening can be minimized, leading to a substantial increase in conversion efficiency. This study provides new theoretical guidance and experimental schemes for microwave-to-optics conversion at room temperature. The proposed mechanism based on Rydberg atoms provides a promising approach to overcoming the limitations imposed by Doppler broadening. Our findings are of great significance for advancing quantum information technology, especially in the context of developing efficient quantum networks.
      通信作者: 李芳, flzbczzt@126.com
    • 基金项目: 国家自然科学基金(批准号: 52275576)和山西省教育厅(批准号: 202303021222099)资助的课题.
      Corresponding author: LI Fang, flzbczzt@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52275576) and the Shanxi Provincial Department of Education, China (Grant No. 202303021222099).
    [1]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [2]

    Lambert N J, Rueda A, Sedlmeir F, Schwefel H G L 2020 Adv. Quantum Technol. 3 1900077Google Scholar

    [3]

    Han X, Fu W, Zou C L, Jiang L, Tang H X 2021 Optica 8 1050Google Scholar

    [4]

    Lauk N, Sinclair N, Barzanjeh S, Covey J P, Saffman M, Spiropulu M, Simon C 2020 Quantum Sci. Technol. 5 020501Google Scholar

    [5]

    Strekalov D V, Savchenkov A A, Matsko A B, Yu N 2009 Opt. Lett. 34 713Google Scholar

    [6]

    刘瑶, 何军, 苏楠, 蔡婷, 刘智慧, 刁文婷, 王军民 2023 72 060303Google Scholar

    Liu Y, He J, Su N, Cai T, Liu Z H, Diao W T, Wang J M 2023 Acta Phys. Sin. 72 060303Google Scholar

    [7]

    Zibrov A S, Matsko A B, Scully M O 2002 Phys. Rev. Lett. 89 103601Google Scholar

    [8]

    Han J S, Vogt T, Gross C, Jaksch D, Kiffner M, Li W H 2018 Phys. Rev. Lett. 120 093201Google Scholar

    [9]

    Vogt T, Gross C, Han J S, Sambit B P, Mark L, Kiffner M, Li W H 2019 Phys. Rev. A 99 023822Google Scholar

    [10]

    Tu H T, Liao K Y, Zhang Z X, Liu X H, Zheng S Y, Yang S Z, Zhang X D, Yan H, Zhu S L 2022 Nat. Photonics 16 291Google Scholar

    [11]

    Sebastian B, Uliana P, Mateusz M, Michał P 2024 Nat. Photonics 18 32Google Scholar

    [12]

    Kumar A, Suleymanzade A, Stone M, Taneja L, Anferov A, Schuster D I, Simon J 2023 Nature 615 614Google Scholar

    [13]

    Fan L, Zou C L, Cheng R, Guo X, Han X, Gong Z, Wang S, Tang H X 2018 Sci. Adv. 4 eaar4994Google Scholar

    [14]

    Higginbotham A P, Burns P S, Urmey M D, Peterson R W, Kampel N S, Brubaker B M, Smith G, Lehnert K W, Regal C A 2018 Nat. Phys. 14 1038Google Scholar

    [15]

    Mirhosseini M, Sipahigil A, Kalaee M, Painter O 2020 Nature 588 599Google Scholar

    [16]

    Delaney R D, Urmey M D, Mittal S, Brubaker B M, Kindem J M, Burns P S, Regal C A, Lehnert K W 2022 Nature 606 489Google Scholar

    [17]

    Petrosyan D, Mølmer K, Fortágh J, Saffman M 2019 New J. Phys. 21 073033Google Scholar

    [18]

    苗强, 吴德伟 2025 激光与光电子学进展 62 0100004Google Scholar

    Miao Q, Wu D W 2025 Laser Optoelectron. Prog. 62 0100004Google Scholar

    [19]

    Covey J P, Sipahigil Alp, Saffman M 2019 Phys. Rev. A 100 012307Google Scholar

    [20]

    Kiffner M, Feizpour A, Kaczmarek K T, Jaksch D, Nunn J 2016 New J. Phys. 18 093030Google Scholar

    [21]

    Demtröder W 2008 Laser Spectroscopy (Berlin: Springer) pp70–75

  • 图 1  四波混频示意图 (a) 对称梯形原子结构图; (b) 实现微波-光学转换的实验装置示意图

    Fig. 1.  Schematic diagrams of four-wave mixing: (a) Symmetric ladder configuration; (b) geometry of the setup enabling microwave-to-optical conversion.

    图 2  无多普勒效应结果图 (a) 生成场L在空间位置的分布图; (b) 共振时转换效率与控制场和泵浦场的关系图

    Fig. 2.  Result of Doppler effect free: (a) Intensities of the converted field L versus position z; (b) 2D density map of the efficiency for the all-resonant case versus ${\varOmega _C}$and $ {\varOmega _P} $.

    图 3  室温下互相干系数实部与虚部与控制场和泵浦场的关系图

    Fig. 3.  Relationship between the real and imaginary parts of the coefficient $ {\beta _M} $ and $ {\beta _L} $ at room temperature versus $ {\varOmega _C} $ and $ {\varOmega _P} $

    图 4  不同温度下转换效率与空间位置的关系图 (a) T = 300 K; (b) T = 3 mK; (c) T = 30 μK

    Fig. 4.  Relationship between conversion efficiency and spatial position at different temperatures: (a) T = 300 K; (b) T = 3 mK; (c) T = 30 μK.

    Baidu
  • [1]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [2]

    Lambert N J, Rueda A, Sedlmeir F, Schwefel H G L 2020 Adv. Quantum Technol. 3 1900077Google Scholar

    [3]

    Han X, Fu W, Zou C L, Jiang L, Tang H X 2021 Optica 8 1050Google Scholar

    [4]

    Lauk N, Sinclair N, Barzanjeh S, Covey J P, Saffman M, Spiropulu M, Simon C 2020 Quantum Sci. Technol. 5 020501Google Scholar

    [5]

    Strekalov D V, Savchenkov A A, Matsko A B, Yu N 2009 Opt. Lett. 34 713Google Scholar

    [6]

    刘瑶, 何军, 苏楠, 蔡婷, 刘智慧, 刁文婷, 王军民 2023 72 060303Google Scholar

    Liu Y, He J, Su N, Cai T, Liu Z H, Diao W T, Wang J M 2023 Acta Phys. Sin. 72 060303Google Scholar

    [7]

    Zibrov A S, Matsko A B, Scully M O 2002 Phys. Rev. Lett. 89 103601Google Scholar

    [8]

    Han J S, Vogt T, Gross C, Jaksch D, Kiffner M, Li W H 2018 Phys. Rev. Lett. 120 093201Google Scholar

    [9]

    Vogt T, Gross C, Han J S, Sambit B P, Mark L, Kiffner M, Li W H 2019 Phys. Rev. A 99 023822Google Scholar

    [10]

    Tu H T, Liao K Y, Zhang Z X, Liu X H, Zheng S Y, Yang S Z, Zhang X D, Yan H, Zhu S L 2022 Nat. Photonics 16 291Google Scholar

    [11]

    Sebastian B, Uliana P, Mateusz M, Michał P 2024 Nat. Photonics 18 32Google Scholar

    [12]

    Kumar A, Suleymanzade A, Stone M, Taneja L, Anferov A, Schuster D I, Simon J 2023 Nature 615 614Google Scholar

    [13]

    Fan L, Zou C L, Cheng R, Guo X, Han X, Gong Z, Wang S, Tang H X 2018 Sci. Adv. 4 eaar4994Google Scholar

    [14]

    Higginbotham A P, Burns P S, Urmey M D, Peterson R W, Kampel N S, Brubaker B M, Smith G, Lehnert K W, Regal C A 2018 Nat. Phys. 14 1038Google Scholar

    [15]

    Mirhosseini M, Sipahigil A, Kalaee M, Painter O 2020 Nature 588 599Google Scholar

    [16]

    Delaney R D, Urmey M D, Mittal S, Brubaker B M, Kindem J M, Burns P S, Regal C A, Lehnert K W 2022 Nature 606 489Google Scholar

    [17]

    Petrosyan D, Mølmer K, Fortágh J, Saffman M 2019 New J. Phys. 21 073033Google Scholar

    [18]

    苗强, 吴德伟 2025 激光与光电子学进展 62 0100004Google Scholar

    Miao Q, Wu D W 2025 Laser Optoelectron. Prog. 62 0100004Google Scholar

    [19]

    Covey J P, Sipahigil Alp, Saffman M 2019 Phys. Rev. A 100 012307Google Scholar

    [20]

    Kiffner M, Feizpour A, Kaczmarek K T, Jaksch D, Nunn J 2016 New J. Phys. 18 093030Google Scholar

    [21]

    Demtröder W 2008 Laser Spectroscopy (Berlin: Springer) pp70–75

  • [1] 丁超, 胡珊珊, 邓松, 宋宏天, 张英, 王保帅, 阎晟, 肖冬萍, 张淮清. 基于里德伯原子电场量子测量方法及激光偏振影响分析.  , 2025, 74(4): 043201. doi: 10.7498/aps.74.20241362
    [2] 盖云冉, 郑康, 丁春玲, 郝向英, 金锐博. 基于半导体量子阱中四波混频效应的高效光学非互易.  , 2024, 73(1): 014201. doi: 10.7498/aps.73.20231212
    [3] 王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬. 里德伯原子辅助光力系统的完美光力诱导透明及慢光效应.  , 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [4] 白健男, 韩嵩, 陈建弟, 韩海燕, 严冬. 超级里德伯原子间的稳态关联集体激发与量子纠缠.  , 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [5] 翟淑琴, 康晓兰, 刘奎. 基于级联四波混频过程的量子导引.  , 2021, 70(16): 160301. doi: 10.7498/aps.70.20201981
    [6] 金钊, 李芮, 公卫江, 祁阳, 张寿, 苏石磊. 基于共振里德伯偶极-偶极相互作用的双反阻塞机制及量子逻辑门的实现.  , 2021, 70(13): 134202. doi: 10.7498/aps.70.20210059
    [7] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速.  , 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [8] 高小苹, 梁景睿, 刘堂昆, 李宏, 刘继兵. 巨梯型四能级里德伯原子系统透射光谱性质的调控.  , 2021, 70(11): 113201. doi: 10.7498/aps.70.20202077
    [9] 杨荣国, 张超霞, 李妮, 张静, 郜江瑞. 级联四波混频系统中纠缠增强的量子操控.  , 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [10] 孙江, 常晓阳, 张素恒, 熊志强. 应用双非简并四波混频理论研究原子的碰撞效应.  , 2016, 65(15): 154206. doi: 10.7498/aps.65.154206
    [11] 张冰, 刘志学, 徐万超. 四能级双V型原子系统中考虑自发辐射相干的无粒子数反转激光.  , 2013, 62(16): 164207. doi: 10.7498/aps.62.164207
    [12] 孙江, 孙娟, 王颖, 苏红新. 双光子共振非简并四波混频测量Ba原子里德伯态的碰撞展宽和频移.  , 2012, 61(11): 114214. doi: 10.7498/aps.61.114214
    [13] 孙江, 刘鹏, 孙娟, 苏红新, 王颖. 双光子共振非简并四波混频测量钡原子里德伯态碰撞展宽中的伴线研究.  , 2012, 61(12): 124205. doi: 10.7498/aps.61.124205
    [14] 苗向蕊, 高士明, 高 莹. 基于光纤四波混频效应的新型组播方法.  , 2008, 57(12): 7699-7704. doi: 10.7498/aps.57.7699
    [15] 刘 霞, 牛金艳, 孙 江, 米 辛, 姜 谦, 吴令安, 傅盘铭. 布里渊增强非简并四波混频.  , 2008, 57(8): 4991-4994. doi: 10.7498/aps.57.4991
    [16] 邓 莉, 孙真荣, 林位株, 文锦辉. 亚10 fs激光脉冲产生中的受激拉曼散射与四波混频效应.  , 2008, 57(12): 7668-7673. doi: 10.7498/aps.57.7668
    [17] 朱成禹, 吕志伟, 何伟明, 巴德欣, 王雨雷, 高 玮, 董永康. 布里渊增强四波混频时域特性的理论研究.  , 2007, 56(1): 229-235. doi: 10.7498/aps.56.229
    [18] 左战春, 孙 江, 吴令安, 傅盘铭. 消多普勒三光子共振六波混频.  , 2006, 55(3): 1186-1190. doi: 10.7498/aps.55.1186
    [19] 孙 江, 左战春, 郭庆林, 王英龙, 怀素芳, 王 颖, 傅盘铭. 应用双光子共振非简并四波混频测量Ba原子里德伯态.  , 2006, 55(1): 221-225. doi: 10.7498/aps.55.221
    [20] 孙 江, 左战春, 米 辛, 俞祖和, 吴令安, 傅盘铭. 引入量子干涉的双光子共振非简并四波混频.  , 2005, 54(1): 149-154. doi: 10.7498/aps.54.149
计量
  • 文章访问数:  482
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-30
  • 修回日期:  2025-06-12
  • 上网日期:  2025-06-19
  • 刊出日期:  2025-08-20

/

返回文章
返回
Baidu
map