-
To achieve multi-channel parallel transmission of complex signals and enhance spectral efficiency, this study presents a Rydberg atomic antenna system that can demonstrate multiplexed communication schemes. 852-nm and 509-nm lasers are used to excite cesium atoms into Rydberg states in a vapor cell, while employing differential detection techniques to suppress common-mode noise in order to obtain high signal-to-noise ratio electromagnetically induced transparency (EIT) spectra. Under weak electric field conditions, microwave field coupling causes atomic energy level shifts, resulting in two-photon detuning and rendering the EIT transmission intensity almost linearly dependent on the microwave electric field strength. Based on this effect, the integrated electrode configuration in the atomic cell generates a time-varying electric field, which can measure the waveforms, amplitudes, and frequencies of microwave and low-frequency electric fields. According to this principle, we decompose complex chaotic signals into three-dimensional orthogonal electric field components in order to demonstrate time-division multiplexing (TDM) of three-channel signals. Meanwhile, frequency-division multiplexing (FDM) is realized by modulating the x -, y -, z - channels with 3 kHz, 5 kHz, and 4 kHz carriers, respectively. The quantitative analysis of the parameters related to the transmition signal and the reference signal reveals high-fidelity reconstruction, with the fidelity levels reaching 95% for TDM and 90% for FDM. These results validate the feasibility of using optical atomic antennas to reconstruct complex signal waveforms and emphasize the potential of Rydberg-based systems in high-performance electromagnetic field sensing and communication applications.
-
Keywords:
- Rydberg atomic antenna /
- electromagnetically induced transparency /
- three-dimensional chaotic signals /
- signal transmission
[1] He J, Liu Q, Yang Z, Niu Q Q, Ban X J, Wang J M 2021 Phys. Rev. A 104 063120
Google Scholar
[2] Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014053
Google Scholar
[3] 鲜佩, 吴峰 2022 电子信息对抗技术 37 5
Google Scholar
Wu P, Wu F, 2022 Electron. Inf. Warfare Technol. 37 5
Google Scholar
[4] Fu Y Q, Lin Y, Wu B, An Q, Liu Y 2022 Chin. J. Radio. Sci. 37 279 (in Chinse) [付云起, 林沂, 武博, 安强, 刘燚 2022 电波科学学报 37 279]
Google Scholar
Fu Y Q, Lin Y, Wu B, An Q, Liu Y 2022 Chin. J. Radio. Sci. 37 279 (in Chinse)
Google Scholar
[5] 刘慧丰 2014 硕士学位论文 (太原: 山西大学)
Liu H F 2014 M. S. Thesis (Taiyuan: Shanxi University
[6] 王学锋, 刘崇泰, 卢向东, 李建军, 邓意成, 徐强锋 2025 激光与光电子学进展 62 0100010
Google Scholar
Wang X F, Liu C T, Lu X D, Li J J, Deng Y C, Xu Q F 2025 Laser Optoelectron. Prog. 62 0100010
Google Scholar
[7] 张力华 2024 博士学位论文 (合肥: 中国科学技术大学)
Zhang L H 2024 Ph. D. Dissertation (Hefei: University of Science and Technology of China
[8] Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819
Google Scholar
[9] Kumar S, Fan H Q, Kübler H, Sheng J T, Shaffer J P 2017 Sci. Rep. 7 42981
Google Scholar
[10] Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911
Google Scholar
[11] Ding D S, Liu Z K, Shi B S, Guo G C, Mølmer K, Adams C S 2022 Nat. Phys. 18 1447
Google Scholar
[12] Simons M T, Haddab A H, Gordon J A, Holloway C L 2019 Appl. Phys. Lett. 114 114101
Google Scholar
[13] Holloway C L, Simons M T, Gordon J A, Novotny D 2019 IEEE Antennas Wirel. Propag. Lett. 18 1853
Google Scholar
[14] Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 2455
Google Scholar
[15] 王勤霞 2023 博士学位论文 (太原: 山西大学)
Wang Q X 2023 Ph. D. Dissertation (Taiyuan: Shanxi University
[16] 贾春阳, 陈雪花, 丛楠, 罗文浩, 张笑楠, 杨仁福 2024 信息通信技术与政策 50 85
Google Scholar
Jia C Y, Chen X H, Cong N, Luo W H, Zhang X N, Yang R F 2024 Inf. Commun. Technol. Policy 50 85
Google Scholar
[17] Deb A B, Kjærgaard N 2018 Appl. Phys. Lett. 112 211106
Google Scholar
[18] Meyer D H, Cox K C, Fatemi F K, Kunz P D 2018 Appl. Phys. Lett. 112 211108
Google Scholar
[19] Jiao Y C, Han X X, Fan J B, Raithel G, Zhao J M, Jia S T 2019 Appl. Phys. Express 12 126002
Google Scholar
[20] Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848
Google Scholar
[21] Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021 Appl. Phys. Lett. 118 114001
Google Scholar
[22] Du Y J, Cong N, Wei X G, Zhang X N, Luo W H, He J, Yang R F 2022 AIP Adv. 12 065118
Google Scholar
[23] 高永胜, 文雯, 庞晓炎, 等 2025 CN202411680275.4
Gao Y S, Wen W, Pang X Y, et al. 2025 CN202411680275.4
[24] Otto J S, Hunter M K, Kjærgaard N, Deb A B 2021 Appl. Phys. Lett. 129 154503
Google Scholar
[25] 陈远 2019硕士学位论文 (镇江: 江苏大学)
Chen Y 2019 M. S. Thesis (Zhenjiang: Jiangsu University
[26] 丁超, 胡珊珊, 邓松, 宋宏天, 张英, 王保帅, 阎晟, 肖冬萍, 张淮清 2025 74 043201
Google Scholar
Ding C, Hu S S, Deng S, Song H T, Zhang Y, Wang B S, Yan S, Xiao D P, Zhang H Q 2025 Acta Phys. Sin. 74 043201
Google Scholar
[27] 李伟, 张淳刚, 张好, 景明勇, 张临杰 2021 激光与光电子学进展 58 144
Google Scholar
Li W, Zhang C G, Zhang H, Jing M Y, Zhang L J 2021 Laser Optoelectron. Prog. 58 144
Google Scholar
-
图 3 铯原子光谱实验装置图, 其中, λ/2是半波片; PBS是偏振分光棱镜; L是透镜; DM1和DM4分别是852 nm高反射率(HR)和509 nm 高透射率(HT)双色镜; DM2和DM3分别是852 nm高透射率(HT)和509 nm 高反射率(HR)双色镜; PD是光电探测器; SAS是饱和吸收光谱; D是激光收集器
Fig. 3. Diagram of the caesium atomic spectroscopy experimental apparatus, where λ/2 is a half-wave plate; PBS is a polarising beamsplitter prism; L is a lens; DM1 and DM4 are dichroic mirrors with high reflectivity (HR) at 852 nm and high transmittance (HT) at 509 nm, respectively; DM2 and DM3 are dichroic mirrors with high transmittance (HT) at 852 nm and high reflectivity (HR) at 509 nm, respectively; PD is a photodetector; SAS is the saturation absorption spectrum; D is the laser collector.
表 1 国内外信号传输相关工作对比表
Table 1. Comparison table of signal transmission-related work at home and abroad.
时间 研究团队 信号类型 保真度 2018年 新西兰奥塔哥大学Kjærgaard团队[17] 基带信号单通道传输 较高 2019年 山西大学赵建明团队[19] 数字信号单通道传输 超95% 2019年 中国计量科学研究院宋振飞团队[20] 数字信号单通道传输 接近100% 2020年 美国Rydberg Technologies Inc.公司[14] 音频信号单通道传输 较高 2021年 美国NIST的Holloway团队[21] 数字信号单通道传输 超95% 2022年 北京量子信息科学研究院杨仁福团队[22] 模拟信号、数字信号双通道传输 较高 2024年 西北工业大学高永胜团队[23] 数字信号单通道传输 超90% 2025年 本实验 模拟信号三通道同时传输 超90% -
[1] He J, Liu Q, Yang Z, Niu Q Q, Ban X J, Wang J M 2021 Phys. Rev. A 104 063120
Google Scholar
[2] Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014053
Google Scholar
[3] 鲜佩, 吴峰 2022 电子信息对抗技术 37 5
Google Scholar
Wu P, Wu F, 2022 Electron. Inf. Warfare Technol. 37 5
Google Scholar
[4] Fu Y Q, Lin Y, Wu B, An Q, Liu Y 2022 Chin. J. Radio. Sci. 37 279 (in Chinse) [付云起, 林沂, 武博, 安强, 刘燚 2022 电波科学学报 37 279]
Google Scholar
Fu Y Q, Lin Y, Wu B, An Q, Liu Y 2022 Chin. J. Radio. Sci. 37 279 (in Chinse)
Google Scholar
[5] 刘慧丰 2014 硕士学位论文 (太原: 山西大学)
Liu H F 2014 M. S. Thesis (Taiyuan: Shanxi University
[6] 王学锋, 刘崇泰, 卢向东, 李建军, 邓意成, 徐强锋 2025 激光与光电子学进展 62 0100010
Google Scholar
Wang X F, Liu C T, Lu X D, Li J J, Deng Y C, Xu Q F 2025 Laser Optoelectron. Prog. 62 0100010
Google Scholar
[7] 张力华 2024 博士学位论文 (合肥: 中国科学技术大学)
Zhang L H 2024 Ph. D. Dissertation (Hefei: University of Science and Technology of China
[8] Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819
Google Scholar
[9] Kumar S, Fan H Q, Kübler H, Sheng J T, Shaffer J P 2017 Sci. Rep. 7 42981
Google Scholar
[10] Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911
Google Scholar
[11] Ding D S, Liu Z K, Shi B S, Guo G C, Mølmer K, Adams C S 2022 Nat. Phys. 18 1447
Google Scholar
[12] Simons M T, Haddab A H, Gordon J A, Holloway C L 2019 Appl. Phys. Lett. 114 114101
Google Scholar
[13] Holloway C L, Simons M T, Gordon J A, Novotny D 2019 IEEE Antennas Wirel. Propag. Lett. 18 1853
Google Scholar
[14] Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 2455
Google Scholar
[15] 王勤霞 2023 博士学位论文 (太原: 山西大学)
Wang Q X 2023 Ph. D. Dissertation (Taiyuan: Shanxi University
[16] 贾春阳, 陈雪花, 丛楠, 罗文浩, 张笑楠, 杨仁福 2024 信息通信技术与政策 50 85
Google Scholar
Jia C Y, Chen X H, Cong N, Luo W H, Zhang X N, Yang R F 2024 Inf. Commun. Technol. Policy 50 85
Google Scholar
[17] Deb A B, Kjærgaard N 2018 Appl. Phys. Lett. 112 211106
Google Scholar
[18] Meyer D H, Cox K C, Fatemi F K, Kunz P D 2018 Appl. Phys. Lett. 112 211108
Google Scholar
[19] Jiao Y C, Han X X, Fan J B, Raithel G, Zhao J M, Jia S T 2019 Appl. Phys. Express 12 126002
Google Scholar
[20] Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848
Google Scholar
[21] Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021 Appl. Phys. Lett. 118 114001
Google Scholar
[22] Du Y J, Cong N, Wei X G, Zhang X N, Luo W H, He J, Yang R F 2022 AIP Adv. 12 065118
Google Scholar
[23] 高永胜, 文雯, 庞晓炎, 等 2025 CN202411680275.4
Gao Y S, Wen W, Pang X Y, et al. 2025 CN202411680275.4
[24] Otto J S, Hunter M K, Kjærgaard N, Deb A B 2021 Appl. Phys. Lett. 129 154503
Google Scholar
[25] 陈远 2019硕士学位论文 (镇江: 江苏大学)
Chen Y 2019 M. S. Thesis (Zhenjiang: Jiangsu University
[26] 丁超, 胡珊珊, 邓松, 宋宏天, 张英, 王保帅, 阎晟, 肖冬萍, 张淮清 2025 74 043201
Google Scholar
Ding C, Hu S S, Deng S, Song H T, Zhang Y, Wang B S, Yan S, Xiao D P, Zhang H Q 2025 Acta Phys. Sin. 74 043201
Google Scholar
[27] 李伟, 张淳刚, 张好, 景明勇, 张临杰 2021 激光与光电子学进展 58 144
Google Scholar
Li W, Zhang C G, Zhang H, Jing M Y, Zhang L J 2021 Laser Optoelectron. Prog. 58 144
Google Scholar
计量
- 文章访问数: 386
- PDF下载量: 14
- 被引次数: 0