搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于原子天线的混沌信号传输

赵晨含 苏楠 刘瑶 何军 詹德芳 刘智慧 王军民

引用本文:
Citation:

基于原子天线的混沌信号传输

赵晨含, 苏楠, 刘瑶, 何军, 詹德芳, 刘智慧, 王军民

Chaos signal transmission based on atomic antennas

ZHAO Chenhan, SU Nan, LIU Yao, HE Jun, ZHAN Defang, LIU Zhihui, WANG Junmin
cstr: 32037.14.aps.74.20250554
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文通过构建里德伯原子天线演示了复杂信号的多路并行传输. 利用852, 509 nm波长的激光进行双光子级联激发制备铯(133Cs)原子里德伯态, 利用差分探测技术消除激光共模噪声, 获得高信噪比的电磁感应透明(EIT)光谱. 实验将复杂混沌信号分解为三维独立电场信号, 演示了三路信号的时间分离传输和多载波并行传输. 我们定量评估了传输信号与参考信号的关联特性, 相关结果证实光学原子天线可以实现复杂信号的波形重构.
    To achieve multi-channel parallel transmission of complex signals and enhance spectral efficiency, this study presents a Rydberg atomic antenna system that can demonstrate multiplexed communication schemes. 852-nm and 509-nm lasers are used to excite cesium atoms into Rydberg states in a vapor cell, while employing differential detection techniques to suppress common-mode noise in order to obtain high signal-to-noise ratio electromagnetically induced transparency (EIT) spectra. Under weak electric field conditions, microwave field coupling causes atomic energy level shifts, resulting in two-photon detuning and rendering the EIT transmission intensity almost linearly dependent on the microwave electric field strength. Based on this effect, the integrated electrode configuration in the atomic cell generates a time-varying electric field, which can measure the waveforms, amplitudes, and frequencies of microwave and low-frequency electric fields. According to this principle, we decompose complex chaotic signals into three-dimensional orthogonal electric field components in order to demonstrate time-division multiplexing (TDM) of three-channel signals. Meanwhile, frequency-division multiplexing (FDM) is realized by modulating the x -, y -, z - channels with 3 kHz, 5 kHz, and 4 kHz carriers, respectively. The quantitative analysis of the parameters related to the transmition signal and the reference signal reveals high-fidelity reconstruction, with the fidelity levels reaching 95% for TDM and 90% for FDM. These results validate the feasibility of using optical atomic antennas to reconstruct complex signal waveforms and emphasize the potential of Rydberg-based systems in high-performance electromagnetic field sensing and communication applications.
      通信作者: 何军, hejun@sxu.edu.cn
      Corresponding author: HE Jun, hejun@sxu.edu.cn
    [1]

    He J, Liu Q, Yang Z, Niu Q Q, Ban X J, Wang J M 2021 Phys. Rev. A 104 063120Google Scholar

    [2]

    Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014053Google Scholar

    [3]

    鲜佩, 吴峰 2022 电子信息对抗技术 37 5Google Scholar

    Wu P, Wu F, 2022 Electron. Inf. Warfare Technol. 37 5Google Scholar

    [4]

    Fu Y Q, Lin Y, Wu B, An Q, Liu Y 2022 Chin. J. Radio. Sci. 37 279 (in Chinse) [付云起, 林沂, 武博, 安强, 刘燚 2022 电波科学学报 37 279]Google Scholar

    Fu Y Q, Lin Y, Wu B, An Q, Liu Y 2022 Chin. J. Radio. Sci. 37 279 (in Chinse)Google Scholar

    [5]

    刘慧丰 2014 硕士学位论文 (太原: 山西大学)

    Liu H F 2014 M. S. Thesis (Taiyuan: Shanxi University

    [6]

    王学锋, 刘崇泰, 卢向东, 李建军, 邓意成, 徐强锋 2025 激光与光电子学进展 62 0100010Google Scholar

    Wang X F, Liu C T, Lu X D, Li J J, Deng Y C, Xu Q F 2025 Laser Optoelectron. Prog. 62 0100010Google Scholar

    [7]

    张力华 2024 博士学位论文 (合肥: 中国科学技术大学)

    Zhang L H 2024 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [8]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [9]

    Kumar S, Fan H Q, Kübler H, Sheng J T, Shaffer J P 2017 Sci. Rep. 7 42981Google Scholar

    [10]

    Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911Google Scholar

    [11]

    Ding D S, Liu Z K, Shi B S, Guo G C, Mølmer K, Adams C S 2022 Nat. Phys. 18 1447Google Scholar

    [12]

    Simons M T, Haddab A H, Gordon J A, Holloway C L 2019 Appl. Phys. Lett. 114 114101Google Scholar

    [13]

    Holloway C L, Simons M T, Gordon J A, Novotny D 2019 IEEE Antennas Wirel. Propag. Lett. 18 1853Google Scholar

    [14]

    Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 2455Google Scholar

    [15]

    王勤霞 2023 博士学位论文 (太原: 山西大学)

    Wang Q X 2023 Ph. D. Dissertation (Taiyuan: Shanxi University

    [16]

    贾春阳, 陈雪花, 丛楠, 罗文浩, 张笑楠, 杨仁福 2024 信息通信技术与政策 50 85Google Scholar

    Jia C Y, Chen X H, Cong N, Luo W H, Zhang X N, Yang R F 2024 Inf. Commun. Technol. Policy 50 85Google Scholar

    [17]

    Deb A B, Kjærgaard N 2018 Appl. Phys. Lett. 112 211106Google Scholar

    [18]

    Meyer D H, Cox K C, Fatemi F K, Kunz P D 2018 Appl. Phys. Lett. 112 211108Google Scholar

    [19]

    Jiao Y C, Han X X, Fan J B, Raithel G, Zhao J M, Jia S T 2019 Appl. Phys. Express 12 126002Google Scholar

    [20]

    Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848Google Scholar

    [21]

    Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021 Appl. Phys. Lett. 118 114001Google Scholar

    [22]

    Du Y J, Cong N, Wei X G, Zhang X N, Luo W H, He J, Yang R F 2022 AIP Adv. 12 065118Google Scholar

    [23]

    高永胜, 文雯, 庞晓炎, 等 2025 CN202411680275.4

    Gao Y S, Wen W, Pang X Y, et al. 2025 CN202411680275.4

    [24]

    Otto J S, Hunter M K, Kjærgaard N, Deb A B 2021 Appl. Phys. Lett. 129 154503Google Scholar

    [25]

    陈远 2019硕士学位论文 (镇江: 江苏大学)

    Chen Y 2019 M. S. Thesis (Zhenjiang: Jiangsu University

    [26]

    丁超, 胡珊珊, 邓松, 宋宏天, 张英, 王保帅, 阎晟, 肖冬萍, 张淮清 2025 74 043201Google Scholar

    Ding C, Hu S S, Deng S, Song H T, Zhang Y, Wang B S, Yan S, Xiao D P, Zhang H Q 2025 Acta Phys. Sin. 74 043201Google Scholar

    [27]

    李伟, 张淳刚, 张好, 景明勇, 张临杰 2021 激光与光电子学进展 58 144Google Scholar

    Li W, Zhang C G, Zhang H, Jing M Y, Zhang L J 2021 Laser Optoelectron. Prog. 58 144Google Scholar

  • 图 1  铯原子里德伯跃迁能级图

    Fig. 1.  Rydberg transition energy level diagram of the caesium atom.

    图 2  数值模拟生成混沌系统 (a)三维图像; (b) x, y, z三维度时域信号

    Fig. 2.  Numerical simulation of chaotic systems: (a) Three-dimensional images; (b) x, y, and z three-dimensional time-domain signals.

    图 3  铯原子光谱实验装置图, 其中, λ/2是半波片; PBS是偏振分光棱镜; L是透镜; DM1和DM4分别是852 nm高反射率(HR)和509 nm 高透射率(HT)双色镜; DM2和DM3分别是852 nm高透射率(HT)和509 nm 高反射率(HR)双色镜; PD是光电探测器; SAS是饱和吸收光谱; D是激光收集器

    Fig. 3.  Diagram of the caesium atomic spectroscopy experimental apparatus, where λ/2 is a half-wave plate; PBS is a polarising beamsplitter prism; L is a lens; DM1 and DM4 are dichroic mirrors with high reflectivity (HR) at 852 nm and high transmittance (HT) at 509 nm, respectively; DM2 and DM3 are dichroic mirrors with high transmittance (HT) at 852 nm and high reflectivity (HR) at 509 nm, respectively; PD is a photodetector; SAS is the saturation absorption spectrum; D is the laser collector.

    图 4  实验测量的铯里德伯原子EIT信号

    Fig. 4.  Experimentally measured CIT signal for caesium Rydberg atom.

    图 5  参考波形和测量波形 (a) x方向; (b) y方向; (c) z方向

    Fig. 5.  Reference waveform and measured waveforms: (a) x-direction; (b) y-direction; (c) z-direction.

    图 6  (a)参考波形三维图像; (b)识别波形三维图像

    Fig. 6.  (a) Reference waveform three-dimensional image; (b) identified waveform three-dimensional image.

    图 7  识别信号与参考信号的相关性热图 (a) x方向; (b) y方向; (c) z方向

    Fig. 7.  Heat map of the correlation between the signal and the reference signal: (a) x-direction; (b) y-direction; (c) z-direction.

    图 8  参考波形和测量波形 (a) x方向; (b) y方向; (c) z方向

    Fig. 8.  Reference waveform and measurement waveform: (a) x direction; (b) y direction; (c) z direction.

    图 9  (a) 参考波形三维图像; (b) 识别波形三维图像

    Fig. 9.  (a) Three-dimensional image of the reference waveform; (b) three-dimensional image of the identified waveform.

    表 1  国内外信号传输相关工作对比表

    Table 1.  Comparison table of signal transmission-related work at home and abroad.

    时间 研究团队 信号类型 保真度
    2018年 新西兰奥塔哥大学Kjærgaard团队[17] 基带信号单通道传输 较高
    2019年 山西大学赵建明团队[19] 数字信号单通道传输 超95%
    2019年 中国计量科学研究院宋振飞团队[20] 数字信号单通道传输 接近100%
    2020年 美国Rydberg Technologies Inc.公司[14] 音频信号单通道传输 较高
    2021年 美国NIST的Holloway团队[21] 数字信号单通道传输 超95%
    2022年 北京量子信息科学研究院杨仁福团队[22] 模拟信号、数字信号双通道传输 较高
    2024年 西北工业大学高永胜团队[23] 数字信号单通道传输 超90%
    2025年 本实验 模拟信号三通道同时传输 超90%
    下载: 导出CSV
    Baidu
  • [1]

    He J, Liu Q, Yang Z, Niu Q Q, Ban X J, Wang J M 2021 Phys. Rev. A 104 063120Google Scholar

    [2]

    Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014053Google Scholar

    [3]

    鲜佩, 吴峰 2022 电子信息对抗技术 37 5Google Scholar

    Wu P, Wu F, 2022 Electron. Inf. Warfare Technol. 37 5Google Scholar

    [4]

    Fu Y Q, Lin Y, Wu B, An Q, Liu Y 2022 Chin. J. Radio. Sci. 37 279 (in Chinse) [付云起, 林沂, 武博, 安强, 刘燚 2022 电波科学学报 37 279]Google Scholar

    Fu Y Q, Lin Y, Wu B, An Q, Liu Y 2022 Chin. J. Radio. Sci. 37 279 (in Chinse)Google Scholar

    [5]

    刘慧丰 2014 硕士学位论文 (太原: 山西大学)

    Liu H F 2014 M. S. Thesis (Taiyuan: Shanxi University

    [6]

    王学锋, 刘崇泰, 卢向东, 李建军, 邓意成, 徐强锋 2025 激光与光电子学进展 62 0100010Google Scholar

    Wang X F, Liu C T, Lu X D, Li J J, Deng Y C, Xu Q F 2025 Laser Optoelectron. Prog. 62 0100010Google Scholar

    [7]

    张力华 2024 博士学位论文 (合肥: 中国科学技术大学)

    Zhang L H 2024 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [8]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [9]

    Kumar S, Fan H Q, Kübler H, Sheng J T, Shaffer J P 2017 Sci. Rep. 7 42981Google Scholar

    [10]

    Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911Google Scholar

    [11]

    Ding D S, Liu Z K, Shi B S, Guo G C, Mølmer K, Adams C S 2022 Nat. Phys. 18 1447Google Scholar

    [12]

    Simons M T, Haddab A H, Gordon J A, Holloway C L 2019 Appl. Phys. Lett. 114 114101Google Scholar

    [13]

    Holloway C L, Simons M T, Gordon J A, Novotny D 2019 IEEE Antennas Wirel. Propag. Lett. 18 1853Google Scholar

    [14]

    Anderson D A, Sapiro R E, Raithel G 2021 IEEE Trans. Antennas Propag. 69 2455Google Scholar

    [15]

    王勤霞 2023 博士学位论文 (太原: 山西大学)

    Wang Q X 2023 Ph. D. Dissertation (Taiyuan: Shanxi University

    [16]

    贾春阳, 陈雪花, 丛楠, 罗文浩, 张笑楠, 杨仁福 2024 信息通信技术与政策 50 85Google Scholar

    Jia C Y, Chen X H, Cong N, Luo W H, Zhang X N, Yang R F 2024 Inf. Commun. Technol. Policy 50 85Google Scholar

    [17]

    Deb A B, Kjærgaard N 2018 Appl. Phys. Lett. 112 211106Google Scholar

    [18]

    Meyer D H, Cox K C, Fatemi F K, Kunz P D 2018 Appl. Phys. Lett. 112 211108Google Scholar

    [19]

    Jiao Y C, Han X X, Fan J B, Raithel G, Zhao J M, Jia S T 2019 Appl. Phys. Express 12 126002Google Scholar

    [20]

    Song Z F, Liu H P, Liu X C, Zhang W F, Zou H Y, Zhang J, Qu J F 2019 Opt. Express 27 8848Google Scholar

    [21]

    Robinson A K, Prajapati N, Senic D, Simons M T, Holloway C L 2021 Appl. Phys. Lett. 118 114001Google Scholar

    [22]

    Du Y J, Cong N, Wei X G, Zhang X N, Luo W H, He J, Yang R F 2022 AIP Adv. 12 065118Google Scholar

    [23]

    高永胜, 文雯, 庞晓炎, 等 2025 CN202411680275.4

    Gao Y S, Wen W, Pang X Y, et al. 2025 CN202411680275.4

    [24]

    Otto J S, Hunter M K, Kjærgaard N, Deb A B 2021 Appl. Phys. Lett. 129 154503Google Scholar

    [25]

    陈远 2019硕士学位论文 (镇江: 江苏大学)

    Chen Y 2019 M. S. Thesis (Zhenjiang: Jiangsu University

    [26]

    丁超, 胡珊珊, 邓松, 宋宏天, 张英, 王保帅, 阎晟, 肖冬萍, 张淮清 2025 74 043201Google Scholar

    Ding C, Hu S S, Deng S, Song H T, Zhang Y, Wang B S, Yan S, Xiao D P, Zhang H Q 2025 Acta Phys. Sin. 74 043201Google Scholar

    [27]

    李伟, 张淳刚, 张好, 景明勇, 张临杰 2021 激光与光电子学进展 58 144Google Scholar

    Li W, Zhang C G, Zhang H, Jing M Y, Zhang L J 2021 Laser Optoelectron. Prog. 58 144Google Scholar

  • [1] 夏刚, 张亚鹏, 汤婧雯, 李春燕, 吴春旺, 张杰, 周艳丽. 电磁感应透明条件下里德伯原子系统的亚稳动力学.  , 2024, 73(10): 104203. doi: 10.7498/aps.73.20240233
    [2] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量.  , 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [3] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收.  , 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [4] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位.  , 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [5] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 弱射频场中Rydberg原子的电磁感应透明.  , 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [6] 陈秋成. 半导体三量子点电磁感应透明介质中的非线性法拉第偏转.  , 2016, 65(24): 247801. doi: 10.7498/aps.65.247801
    [7] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 调制激光场中Rydberg原子的电磁感应透明.  , 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [8] 白金海, 芦小刚, 缪兴绪, 裴丽娅, 王梦, 高艳磊, 王如泉, 吴令安, 傅盘铭, 左战春. Rb87冷原子电磁感应透明吸收曲线不对称性的分析.  , 2015, 64(3): 034206. doi: 10.7498/aps.64.034206
    [9] 王梦, 白金海, 裴丽娅, 芦小刚, 高艳磊, 王如泉, 吴令安, 杨世平, 庞兆广, 傅盘铭, 左战春. 铷原子耦合光频率近共振时的电磁感应透明.  , 2015, 64(15): 154208. doi: 10.7498/aps.64.154208
    [10] 张岩, 刘一谋, 韩明, 王刚成, 崔淬砺, 郑泰玉. 二维电磁感应光子带隙的动态生成与调控.  , 2014, 63(22): 224203. doi: 10.7498/aps.63.224203
    [11] 赵虎, 李铁夫, 刘建设, 陈炜. 基于超导量子比特的电磁感应透明研究进展.  , 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [12] 邱田会, 杨国建. 微波射频场调制下Λ型三能级原子系统的电磁感应光栅.  , 2012, 61(1): 014205. doi: 10.7498/aps.61.014205
    [13] 佘彦超, 张蔚曦, 王登龙. 电磁感应透明介质中非线性法拉第偏转.  , 2011, 60(6): 064205. doi: 10.7498/aps.60.064205
    [14] 佘彦超, 王登龙, 丁建文. 电磁感应透明介质中的弱光空间暗孤子环.  , 2009, 58(5): 3198-3202. doi: 10.7498/aps.58.3198
    [15] 庄 飞, 沈建其, 叶 军. 调控电磁感应透明气体折射率实现可控光子带隙结构.  , 2007, 56(1): 541-545. doi: 10.7498/aps.56.541
    [16] 杜 丹, 胡响明. 级联三能级介质中非线性光学信号的增强.  , 2006, 55(10): 5232-5236. doi: 10.7498/aps.55.5232
    [17] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究.  , 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [18] 赵建明, 赵延霆, 黄涛, 肖连团, 贾锁堂. 双抽运光作用电磁感应透明的实验研究.  , 2004, 53(4): 1023-1026. doi: 10.7498/aps.53.1023
    [19] 刘正东, 武 强. 被三个耦合场驱动的四能级原子的电磁感应透明.  , 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
    [20] 李永放, 孙建锋. 梯型四能级系统中超窄电磁感应透明与无反转增益.  , 2003, 52(3): 547-555. doi: 10.7498/aps.52.547
计量
  • 文章访问数:  386
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-25
  • 修回日期:  2025-05-23
  • 上网日期:  2025-06-04
  • 刊出日期:  2025-08-05

/

返回文章
返回
Baidu
map