搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能量分辨光电子干涉仪研究进展

王慧勇 李铭轩 罗嗣佐 丁大军

引用本文:
Citation:

高能量分辨光电子干涉仪研究进展

王慧勇, 李铭轩, 罗嗣佐, 丁大军

Research progress of high-energy-resolution photoelectron interferometer

WANG Huiyong, LI Mingxuan, LUO Sizuo, DING Dajun
cstr: 32037.14.aps.74.20250534
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 近年来, 阿秒极紫外脉冲的产生与相关谱学测量技术的发展, 为研究电子动力学提供了强有力的工具. 阿秒时间尺度上的研究, 能够实时追踪原子分子的电子运动, 测量电子波包演变及其量子特性, 对于揭示电子在原子或分子内部的复杂动力学过程至关重要. 基于阿秒极紫外脉冲串光源发展起来的高能量分辨光电子干涉仪, 以其独特的高能量和高时间分辨特性在阿秒脉冲串光源的表征、原子分子光电离时间延迟、光电子量子态测量以及激光诱导电子动态干涉等动力学研究中实现了重要的应用. 本文围绕建立的先进阿秒串光源和高能量分辨电子谱学测量方法, 对高能量分辨的阿秒超快光电子干涉技术及其应用进行详细介绍, 并基于相关研究进展对阿秒光电子超快动力学以及量子系统相干调控的前景进行了展望.
    In recent years, the attosecond extreme ultraviolet (XUV) pulse generation and advanced spectroscopic techniques have provided powerful tools for investigating electron dynamics. Researches on an attosecond timescale can realize real-time tracking of electronic motion in atoms and molecules, enabling the measurement of electron wave packet evolution and quantum characteristics, which are crucial for revealing complex dynamical processes within atomic and molecular systems. High-resolution photoelectron interferometers based on attosecond XUV pulse trains have played an important role in a wide range of applications due to their unique combination of high energy and temporal resolution. These applications include the characterization of attosecond pulse trains, the measurement of photoionization time delays in atoms and molecules, quantum state reconstruction of photoelectrons, and laser-induced electronic interference phenomena. By integrating attosecond temporal resolution with millielectronvolt level energy resolution, high-resolution photoelectron interferometric spectroscopy has emerged as a key technique for probing ultrafast dynamics and quantum state characterization. This review systematically summarizes recent advances in high-resolution attosecond photoelectron interferometry, with a focus on the experimental approaches and spectroscopic techniques required to access electron dynamics on an attosecond scale. These include the generation of narrowband attosecond XUV pulse trains, attosecond-stable Mach-Zehnder interferometers, high-energy resolution time-of-flight electron spectrometers, and quantum interference-based measurement schemes such as RABBIT and KRAKEN. This review discusses in detail the reconstruction of attosecond pulse sequences, shell-resolved photoionization time delay measurements in atoms, spectral phase evolution in Fano resonances, tomographic reconstruction of photoelectron density matrices on an attosecond timescale, and control experiments of laser-induced electronic dynamic interference effects. Through the analysis of recent studies, we demonstrate the powerful potential of attosecond high-energy resolution photoelectron interferometry in tracking ultrafast electron dynamics. Finally, the prospects of attosecond photoelectron spectroscopy in ultrafast dynamics and coherent manipulation of quantum systems are discussed.
      通信作者: 罗嗣佐, luosz@jlu.edu.cn ; 丁大军, dajund@jlu.edu.cn
    • 基金项目: 国家重大科研仪器研制计划(批准号: 11627807)和国家自然科学基金(批准号: 12450402, 12134005)资助的课题.
      Corresponding author: LUO Sizuo, luosz@jlu.edu.cn ; DING Dajun, dajund@jlu.edu.cn
    • Funds: Project supported by the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 11627807) and the National Natural Science Foundation of China (Grant Nos. 12450402, 12134005).
    [1]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595Google Scholar

    [2]

    Ferray M, L’Huillier A, Li X, Lompre L, Mainfray G, Manus C 1988 J. Phys. B: At. Mol. Opt. Phys. 21 L31Google Scholar

    [3]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [4]

    Macklin J, Kmetec J, Gordon III C 1993 Phys. Rev. Lett. 70 766Google Scholar

    [5]

    L’Huillier A, Balcou P 1993 Phys. Rev. Lett. 70 774Google Scholar

    [6]

    Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, Agostini P 2001 Science 292 1689Google Scholar

    [7]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [8]

    Protopapas M, Keitel C H, Knight P L 1997 Rep. Prog. Phys. 60 389Google Scholar

    [9]

    Sansone G, Poletto L, Nisoli M 2011 Nat. Photonics 5 655Google Scholar

    [10]

    Nisoli M, Decleva P, Calegari F, Palacios A, Martín F 2017 Chem. Rev. 117 10760Google Scholar

    [11]

    Kraus P M, Zürch M, Cushing S K, Neumark D M, Leone S R 2018 Nat. Rev. Chem. 2 82Google Scholar

    [12]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [13]

    Gong X, Lin C, He F, Song Q, Lin K, Ji Q, Zhang W, Ma J, Lu P, Liu Y, Zeng H, Yang W, Wu J 2017 Phys. Rev. Lett. 118 143203Google Scholar

    [14]

    Hu W, Liu Y, Luo S, Li X, Yu J, Li X, Sun Z, Yuan K J, Bandrauk A D, Ding D 2019 Phys. Rev. A 99 011402Google Scholar

    [15]

    Liu Y, Hu W, Luo S, Yuan K J, Sun Z, Bandrauk A D, Ding D 2019 Phys. Rev. A 100 023404Google Scholar

    [16]

    Hu W, Li X, Zhao H, Li W, Lei Y, Kong X, Liu A, Luo S, Ding D 2020 J. Phys. B: At. Mol. Opt. Phys. 53 084002Google Scholar

    [17]

    Borrego-Varillas R, Lucchini M, Nisoli M 2022 Rep. Prog. Phys. 85 066401Google Scholar

    [18]

    Shu Z, Liang H, Wang Y, Hu S, Chen S, Xu H, Ma R, Ding D, Chen J 2022 Phys. Rev. Lett. 128 183202Google Scholar

    [19]

    Li X, Liu Y, Zhang D, He L, Luo S, Shu C C, Ding D 2023 Phys. Rev. A 108 023114Google Scholar

    [20]

    Ren D, Chen C, Li X, Zhao X, Wang S, Li M, Zhao X, Ma P, Wang C, Yang Y, Chen Y, Luo S, Ding D 2023 Phys. Rev. Res. 5 L032044Google Scholar

    [21]

    Li X, Gao X, Li W, Yang T, Zhang D, He L, Luo S, Zhao S F, Ding D 2024 Phys. Rev. A 109 013103Google Scholar

    [22]

    Jin W, Jiang T, Liu J, Luo S, Ren D, Li X, Wang C, Lang Y, Wang X, Zhao J, Zhao Z, Ding D 2024 Ultrafast Sci. 4 0066Google Scholar

    [23]

    Neoričić L, Busto D, Laurell H, Weissenbilder R, Ammitzböll M, Luo S, Peschel J, Wikmark H, Lahl J, Maclot S, Squibb R J, Zhong S, Eng-Johnsson P, Arnold C L, Feifel R, Gisselbrecht M, Lindroth E, L’Huillier A 2022 Front. Phys. 10 964586Google Scholar

    [24]

    Huppert M, Jordan I, Baykusheva D, von Conta A, Wörner H J 2016 Phys. Rev. Lett. 117 093001Google Scholar

    [25]

    Zhong S, Vinbladh J, Busto D, Squibb R J, Isinger M, Neoričić L, Laurell H, Weissenbilder R, Arnold C L, Feifel R, Dahlström J M, Wendin G, Gisselbrecht M, Lindroth E, L’Huillier A 2020 Nat. Commun. 11 5042Google Scholar

    [26]

    Nandi S, Plésiat E, Zhong S, Palacios A, Busto D, Isinger M, Neoričić L, Arnold C L, Squibb R J, Feifel R, Decleva P, L’Huillier A, Martín F, Gisselbrecht M 2020 Sci. Adv. 6 eaba7762Google Scholar

    [27]

    Gong X, Jiang W, Tong J, Qiang J, Lu P, Ni H, Lucchese R, Ueda K, Wu J 2022 Phys. Rev. X 12 011002Google Scholar

    [28]

    Luo S, Weissenbilder R, Laurell H, Ammitzböll M, Poulain V, Busto D, Neoričić L, Guo C, Zhong S, Kroon D, Squibb R J, Feifel R, Gisselbrecht M, L’Huillier A, Arnold C L 2023 Adv. Phys.: X 8 2250105Google Scholar

    [29]

    Laurell H, Finkelstein-Shapiro D, Dittel C, Guo C, Demjaha R, Ammitzböll M, Weissenbilder R, Neoričić L, Luo S, Gisselbrecht M, Arnold C L, Buchleitner A, Pullerits T, L’Huillier A, Busto D 2022 Phys. Rev. Res. 4 033220Google Scholar

    [30]

    Laurell H, Luo S, Weissenbilder R, Ammitzböll M, Ahmed S, Söderberg H, Petersson C L M, Poulain V, Guo C, Dittel C, Finkelstein-Shapiro D, Squibb R J, Feifel R, Gisselbrecht M, Arnold C L, Buchleitner A, Lindroth E, Frisk Kockum A, L’Huillier A, Busto D 2025 Nat. Photonics 19 352Google Scholar

    [31]

    Li M, Xie M, Wang H, Jia L, Li J, Wang W, Cai J, Hong X, Shi X, Lv Y, Zhao X, Luo S, Jiang W C, Peng L Y, Ding D 2024 Phys. Rev. Lett. 133 253201Google Scholar

    [32]

    Kling M F, Vrakking M J 2008 Annu. Rev. Phys. Chem. 59 463Google Scholar

    [33]

    Calegari F, Sansone G, Stagira S, Vozzi C, Nisoli M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 062001Google Scholar

    [34]

    Jiang W, Armstrong G S J, Han L, Xu Y, Zuo Z, Tong J, Lu P, Dahlström J M, Ueda K, Brown A C, van der Hart H W, Gong X, Wu J 2023 Phys. Rev. Lett. 131 203201Google Scholar

    [35]

    Cruz-Rodriguez L, Dey D, Freibert A, Stammer P 2024 Nat. Rev. Phys. 6 691Google Scholar

    [36]

    Li M, Tang X, Wang H, Li J, Wang W, Cai J, Zhang J, San X, Zhao X, Ma P, Luo S, Jin C, Ding D 2025 Light: Sci. Appl. 14 181Google Scholar

    [37]

    Niu Y, Liang H, Liu Y, Liu F, Ma R, Ding D 2017 Chin. Phys. B 26 074222Google Scholar

    [38]

    Witting T, Osolodkov M, Schell F, Morales F, Patchkovskii S, Susnjar P, Cavalcante F, Menoni C, Schulz C, Furch F, Vrakking M 2022 Optica 9 145Google Scholar

    [39]

    Jiang W, Armstrong G S J, Tong J, Xu Y, Zuo Z, Qiang J, Lu P, Clarke D D A, Benda J, Fleischer A, Ni H, Ueda K, van der Hart H W, Brown A C, Gong X, Wu J 2022 Nat. Commun. 13 5072Google Scholar

    [40]

    Li M, Wang H, Li X, Wang J, Zhang J, San X, Ma P, Lu Y, Liu Z, Wang C, Yang Y, Luo S, Ding D 2023 J. Electron Spectrosc. Relat. Phenom. 263 147287Google Scholar

    [41]

    Behrens M, Englert L, Bayer T, Wollenhaupt M 2024 Rev. Sci. Instrum. 95 093101Google Scholar

    [42]

    Wang A L, Serov V V, Kamalov A, Bucksbaum P H, Kheifets A, Cryan J P 2021 Phys. Rev. A 104 063119Google Scholar

    [43]

    Hammerland D, Berglitsch T, Zhang P, Luu T T, Ueda K, Lucchese R R, Wörner H J 2024 Sci. Adv. 10 eadl3810Google Scholar

    [44]

    Isinger M, Squibb R J, Busto D, Zhong S, Harth A, Kroon D, Nandi S, Arnold C L, Miranda M, Dahlström J M, Lindroth E, Feifel R, Gisselbrecht M, L’ Huillier A 2017 Science 358 893Google Scholar

    [45]

    Zaïr A, Mével E, Cormier E, Constant E 2018 J. Opt. Soc. Am. B 35 A110Google Scholar

    [46]

    Ahmadi H, Kellerer S, Ertel D, Moioli M, Reduzzi M, Maroju P K, Jäger A, Shah R N, Lutz J, Frassetto F, Poletto L, Bragheri F, Osellame R, Pfeifer T, Schröter C D, Moshammer R, Sansone G 2020 J. Phys.: Photonics 2 024006Google Scholar

    [47]

    Chini M, Mashiko H, Wang H, Chen S, Yun C, Scott S, Gilbertson S, Chang Z 2009 Opt. Express 17 21459Google Scholar

    [48]

    Sabbar M, Heuser S, Boge R, Lucchini M, Gallmann L, Cirelli C, Keller U 2014 Rev. Sci. Instrum. 85 103113Google Scholar

    [49]

    Huppert M, Jordan I, Wörner H J 2015 Rev. Sci. Instrum. 86 123106Google Scholar

    [50]

    Weber S J, Manschwetus B, Billon M, Böttcher M, Bougeard M, Breger P, Géléoc M, Gruson V, Huetz A, Lin N, Picard Y J, Ruchon T, Salières P, Carré B 2015 Rev. Sci. Instrum. 86 033108Google Scholar

    [51]

    Luttmann M, Bresteau D, Hergott J F, Tcherbakoff O, Ruchon T 2021 Phys. Rev. Appl. 15 034036Google Scholar

    [52]

    Vaughan J, Bahder J, Unzicker B, Arthur D, Tatum M, Hart T, Harrison G, Burrows S, Stringer P, Laurent G M 2019 Opt. Express 27 30989Google Scholar

    [53]

    Luo S, Weissenbilder R, Laurell H, Bello R Y, Marante C, Ammitzböll M, Neoričić L, Ljungdahl A, Squibb R J, Feifel R, Gisselbrecht M, Arnold C L, Martín F, Lindroth E, Argenti L, Busto D, L’Huillier A 2024 Phys. Rev. Res. 6 043271Google Scholar

    [54]

    Muller H 2002 Appl. Phys. B 74 s17Google Scholar

    [55]

    Cavalieri A L, Müller N, Uphues T, Yakovlev V S, Baltuška A, Horvath B, Schmidt B, Blümel L, Holzwarth R, Hendel S, Drescher M, Kleineberg U, Echenique P M, Kienberger R, Krausz F, Heinzmann U 2007 Nature 449 1029Google Scholar

    [56]

    Vos J, Cattaneo L, Patchkovskii S, Zimmermann T, Cirelli C, Lucchini M, Kheifets A, Landsman A S, Keller U 2018 Science 360 1326Google Scholar

    [57]

    Cattaneo L, Vos J, Bello R Y, Palacios A, Heuser S, Pedrelli L, Lucchini M, Cirelli C, Martín F, Keller U 2018 Nat. Phys. 14 733Google Scholar

    [58]

    Kim K T, Ko D H, Park J, Tosa V, Nam C H 2010 New J. Phys. 12 083019Google Scholar

    [59]

    Gagnon J, Goulielmakis E, Yakovlev V S 2008 Appl. Phys. B 92 25Google Scholar

    [60]

    Lucchini M, Brügmann M, Ludwig A, Gallmann L, Keller U, Feurer T 2015 Opt. Express 23 29502Google Scholar

    [61]

    Schultze M, Fieß M, Karpowicz N, Gagnon J, Korbman M, Hofstetter M, Neppl S, Cavalieri A L, Komninos Y, Mercouris T, Nicolaides C A, Pazourek R, Nagele S, Feist J, Burgdörfer J, Azzeer A M, Ernstorfer R, Kienberger R, Kleineberg U, Goulielmakis E, Krausz F, Yakovlev V S 2010 Science 328 1658Google Scholar

    [62]

    Moore L R, Lysaght M A, Parker J S, van der Hart H W, Taylor K T 2011 Phys. Rev. A 84 061404Google Scholar

    [63]

    Feist J, Zatsarinny O, Nagele S, Pazourek R, Burgdörfer J, Guan X, Bartschat K, Schneider B I 2014 Phys. Rev. A 89 033417Google Scholar

    [64]

    Dahlström J M, Carette T, Lindroth E 2012 Phys. Rev. A 86 061402Google Scholar

    [65]

    Turconi M, Barreau L, Busto D, Isinger M, Alexandridi C, Harth A, Squibb R J, Kroon D, Arnold C L, Feifel R, Gisselbrecht M, Argenti L, Martín F, L’ Huillier A, Salières P 2020 J. Phys. B: At. Mol. Opt. Phys. 53 184003Google Scholar

    [66]

    Gruson V, Barreau L, Jiménez-Galan ff, Risoud F, Caillat J, Maquet A, Carré B, Lepetit F, Hergott J F, Ruchon T, Argenti L, Taïeb R, Martín F, Salières P 2016 Science 354 734Google Scholar

    [67]

    Wang H, Chini M, Chen S, Zhang C H, He F, Cheng Y, Wu Y, Thumm U, Chang Z 2010 Phys. Rev. Lett. 105 143002Google Scholar

    [68]

    Ott C, Kaldun A, Raith P, Meyer K, Laux M, Evers J, Keitel C H, Greene C H, Pfeifer T 2013 Science 340 716Google Scholar

    [69]

    Wickenhauser M, Burgdörfer J, Krausz F, Drescher M 2005 Phys. Rev. Lett. 94 023002Google Scholar

    [70]

    Zielinski A, Majety V P, Nagele S, Pazourek R, Burgdörfer J, Scrinzi A 2015 Phys. Rev. Lett. 115 243001Google Scholar

    [71]

    Agarwal G S, Haan S L, Cooper J 1984 Phys. Rev. A 29 2552Google Scholar

    [72]

    Vinbladh J, Dahlström J M, Lindroth E 2019 Phys. Rev. A 100 043424Google Scholar

    [73]

    Marante C, Klinker M, Corral I, González-Vázquez J, Argenti L, Martín F 2017 J. Chem. Theory Comput. 13 499Google Scholar

    [74]

    Carette T, Dahlström J M, Argenti L, Lindroth E 2013 Phys. Rev. A 87 023420Google Scholar

    [75]

    Harkema N, Cariker C, Lindroth E, Argenti L, Sandhu A 2021 Phys. Rev. Lett. 127 023202Google Scholar

    [76]

    Pabst S, Greenman L, Ho P J, Mazziotti D A, Santra R 2011 Phys. Rev. Lett. 106 053003Google Scholar

    [77]

    Nishi T, Lötstedt E, Yamanouchi K 2019 Phys. Rev. A 100 013421Google Scholar

    [78]

    Arnold C, Larivière-Loiselle C, Khalili K, Inhester L, Welsch R, Santra R 2020 J. Phys. B: At. Mol. Opt. Phys. 53 164006Google Scholar

    [79]

    Vrakking M J J 2021 Phys. Rev. Lett. 126 113203Google Scholar

    [80]

    Vinbladh J, Dahlström J M, Lindroth E 2022 Atoms 10 80Google Scholar

    [81]

    Maxwell A S, Madsen L B, Lewenstein M 2022 Nat. Commun. 13 4706Google Scholar

    [82]

    Cattaneo L, Pedrelli L, Bello R Y, Palacios A, Keathley P D, Martín F, Keller U 2022 Phys. Rev. Lett. 128 063001Google Scholar

    [83]

    Koll L M, Maikowski L, Drescher L, Witting T, Vrakking M J J 2022 Phys. Rev. Lett. 128 043201Google Scholar

    [84]

    Blavier M, Gelfand N, Levine R, Remacle F 2022 Chem. Phys. Lett. 804 139885Google Scholar

    [85]

    Blavier M, Levine R D, Remacle F 2022 Phys. Chem. Chem. Phys. 24 17516Google Scholar

    [86]

    Demekhin P V, Cederbaum L S 2012 Phys. Rev. Lett. 108 253001Google Scholar

    [87]

    Demekhin P V, Cederbaum L S 2013 Phys. Rev. A 88 043414Google Scholar

    [88]

    Baghery M, Saalmann U, Rost J M 2017 Phys. Rev. Lett. 118 143202Google Scholar

    [89]

    Jiang W C, Burgdörfer J 2020 Opt. Express 26 053424Google Scholar

    [90]

    Jiang W C, Chen S G, Peng L Y, Burgdörfer J 2020 Phys. Rev. Lett. 124 043203Google Scholar

    [91]

    Liang H, Jiang W C, Wang M X, Gong Q, Krajewska K, Peng L Y 2020 Phys. Rev. A 101 053424Google Scholar

    [92]

    Bertolino M, Carlström S, Peschel J, Zapata F, Lindroth E, Dahlström J M 2022 Phys. Rev. A 106 043108Google Scholar

  • 图 1  (a) Ar与IR相互作用产生的窄带谐波光源; (b)窄带谐波H25的放大图; (c)阿秒极紫外脉冲串的时间结构示意图

    Fig. 1.  (a) Narrowband high-order harmonics generated by the interaction between Ar and the IR driving field; (b) magnified spectrum of the narrowband 25th harmonic (H25); (c) schematic illustration of the temporal structure of the attosecond extreme ultraviolet pulse train.

    图 2  (a)联合腔体内部光学元件与光束路径; (b)主动稳定系统下泵浦-探测臂延迟的绝对相位(上)与相对相位(下)测量结果. 黑色曲线表示在启用主动稳定系统时的长时间光束稳定性, 红色曲线则表示未启用主动稳定系统的情况[40]

    Fig. 2.  (a) Optomechanical and beam path in the combination chamber; (b) absolute phase (upper) and relative phase (lower) of a pump-probe delay with active stability measurement. Long-term stability with (black) and without (red) feedback[40].

    图 3  双光子跃迁量子路径干涉示意图, 使用了He原子的RABBIT光电子谱. 由XUV泵浦光激发的光电子在IR探测光的作用下额外吸收或辐射一个IR光子, 使主峰(MBs)的光电子跃迁至边带(SBs), 且光电子谱强度随XUV泵浦与IR探测之间的相对延迟发生振荡

    Fig. 3.  Schematic of two-photon transition quantum path interference, utilizing the RABBIT photoelectron spectrum of He atoms. The photoelectrons excited by the XUV pump laser, under the influence of the IR probe laser, absorb or emit an additional IR photon, shifting the photoelectrons from the main bands (MBs) to the sidebands (SBs). Furthermore, the intensity of the photoelectron spectrum oscillates as a function of the delay between the XUV pump and IR probe.

    图 4  (a) He原子的RABBIT光电子谱; (b) SB24的振荡数据信号与余弦拟合曲线; (c)提取不同SBs之间的相对相位; (d)基于ePIE算法对APTs进行重建, 得到脉冲持续时间约为280 as[40]

    Fig. 4.  (a) RABBIT spectra of the He atom; (b) oscillatory signal of SB24 fitted with a cosine function; (c) extraction of relative phases between different sidebands; (d) reconstruction of APTs based on the ePIE, the pulse duration approximately 280 as[40].

    图 5  (a) Ne原子中2s与2p壳层的光电离时间延迟差随光子能量的变化(黄点和红点), 与多体微扰理论计算(黑色实线)符合良好. 同时给出了阿秒条纹实验[61]的结果(方块)和shake-up过程相对于2p光电离的时间延迟差(菱形). (b)实验所用光子谱图, 虚线为对应的透射曲线[44]

    Fig. 5.  (a) Relative photoionization time delay between the 2s and 2p shells of Ne as a function of photon energy (yellow and red dots), exhibiting good agreement with the results of many-body perturbation theory (black solid line). The result from the attosecond streaking experiment[61] (squares) is included, and the relative time delay between the shake-up process and 2p channel is shown in diamonds. (b) The photon spectrum used in the experiment, with the dashed line representing the corresponding transmission curve[44].

    图 6  (a)实验测量中涉及的能级、通道和跃迁过程的示意图. 紫色(红色)箭头代表谐波(红外)光子, 黑色箭头代表自电离; 虚线代表吸收谐波光子或在吸收谐波光子后额外吸收或辐射红外光子到达连续态或虚态, 实线表示可能通过自电离衰变到准束缚态. 在Ar中的(b) SB18和(c) SB16中测量到的光电子能谱与XUV和IR之间延迟的函数关系. (d) SB18和(e) SB16中的光电子能谱减去振荡平均值[53]

    Fig. 6.  (a) Illustration of the levels, channels, and transition processes involved in the experiment. The purple (red) arrows represent the harmonic (IR) photons. The black arrows indicate autoionization. Dashed lines mark continuum or virtual states reached by absorption of a harmonic or a harmonic ± an IR photon. Solid lines are quasibound states which may decay by autoionization. Measured photoelectron spectra in (b) SB18 and (c) SB16 in argon as a function of delay between XUV and IR. Photoelectron spectra in (d) SB18 and (e) SB16 after subtracting the mean values of the oscillations[53].

    图 7  KRAKEN技术电离He原子的实验结果 (a)不同$ {\text{δ}}\omega $探测光梳的光电子能谱图; (b)不同$ \hbar {\text{δ}} \omega $光谱图的振荡振幅$ A_{{\text{δ}} \omega} $; (c)重构得到的密度矩阵[30]

    Fig. 7.  Experimental results of ionizing He atoms using KRAKEN technique: (a) Photoelectron spectra with different ${\text{δ}} \omega $ probe frequency combs; (b) the oscillation amplitude $ A_{{\text{δ}} \omega} $ for the spectra corresponding to different $ \hbar {\text{δ}} \omega $ values; (c) reconstruction of the density matrix[30].

    图 8  根据实验测量和理论计算对He的密度矩阵进行重构 (a)根据实验测量结果重构的密度矩阵; (b)检索光谱仪响应函数后, 根据实验结果重构的密度矩阵; (c)基于RRPAE计算重构的密度矩阵; (d)基于RRPAE计算下单光子电离重构得到的密度矩阵[30]

    Fig. 8.  Reconstruction of the density matrix for He based on experimental measurements and theoretical calculations: (a) The density matrix reconstructed from experimental measurement results; (b) the density matrix reconstructed from experimental results after retrieving the corresponding function of the spectrometer; (c) the density matrix reconstructed based on RRPAE calculations; (d) the density matrix reconstructed based on single-photon ionization under RRPAE calculations[30].

    图 9  (a) 实验、(b) TDSE和(c) SFA中获得的电离He原子产生的光电子能谱与泵浦探测时间延迟的关系[31]

    Fig. 9.  Photoelectron spectra from ionization of He as a function of time delay between pump and probe lasers, which are obtained in (a) experiment, (b) TDSE, and (c) SFA, respectively[31].

    Baidu
  • [1]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595Google Scholar

    [2]

    Ferray M, L’Huillier A, Li X, Lompre L, Mainfray G, Manus C 1988 J. Phys. B: At. Mol. Opt. Phys. 21 L31Google Scholar

    [3]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994Google Scholar

    [4]

    Macklin J, Kmetec J, Gordon III C 1993 Phys. Rev. Lett. 70 766Google Scholar

    [5]

    L’Huillier A, Balcou P 1993 Phys. Rev. Lett. 70 774Google Scholar

    [6]

    Paul P M, Toma E S, Breger P, Mullot G, Augé F, Balcou P, Muller H G, Agostini P 2001 Science 292 1689Google Scholar

    [7]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [8]

    Protopapas M, Keitel C H, Knight P L 1997 Rep. Prog. Phys. 60 389Google Scholar

    [9]

    Sansone G, Poletto L, Nisoli M 2011 Nat. Photonics 5 655Google Scholar

    [10]

    Nisoli M, Decleva P, Calegari F, Palacios A, Martín F 2017 Chem. Rev. 117 10760Google Scholar

    [11]

    Kraus P M, Zürch M, Cushing S K, Neumark D M, Leone S R 2018 Nat. Rev. Chem. 2 82Google Scholar

    [12]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [13]

    Gong X, Lin C, He F, Song Q, Lin K, Ji Q, Zhang W, Ma J, Lu P, Liu Y, Zeng H, Yang W, Wu J 2017 Phys. Rev. Lett. 118 143203Google Scholar

    [14]

    Hu W, Liu Y, Luo S, Li X, Yu J, Li X, Sun Z, Yuan K J, Bandrauk A D, Ding D 2019 Phys. Rev. A 99 011402Google Scholar

    [15]

    Liu Y, Hu W, Luo S, Yuan K J, Sun Z, Bandrauk A D, Ding D 2019 Phys. Rev. A 100 023404Google Scholar

    [16]

    Hu W, Li X, Zhao H, Li W, Lei Y, Kong X, Liu A, Luo S, Ding D 2020 J. Phys. B: At. Mol. Opt. Phys. 53 084002Google Scholar

    [17]

    Borrego-Varillas R, Lucchini M, Nisoli M 2022 Rep. Prog. Phys. 85 066401Google Scholar

    [18]

    Shu Z, Liang H, Wang Y, Hu S, Chen S, Xu H, Ma R, Ding D, Chen J 2022 Phys. Rev. Lett. 128 183202Google Scholar

    [19]

    Li X, Liu Y, Zhang D, He L, Luo S, Shu C C, Ding D 2023 Phys. Rev. A 108 023114Google Scholar

    [20]

    Ren D, Chen C, Li X, Zhao X, Wang S, Li M, Zhao X, Ma P, Wang C, Yang Y, Chen Y, Luo S, Ding D 2023 Phys. Rev. Res. 5 L032044Google Scholar

    [21]

    Li X, Gao X, Li W, Yang T, Zhang D, He L, Luo S, Zhao S F, Ding D 2024 Phys. Rev. A 109 013103Google Scholar

    [22]

    Jin W, Jiang T, Liu J, Luo S, Ren D, Li X, Wang C, Lang Y, Wang X, Zhao J, Zhao Z, Ding D 2024 Ultrafast Sci. 4 0066Google Scholar

    [23]

    Neoričić L, Busto D, Laurell H, Weissenbilder R, Ammitzböll M, Luo S, Peschel J, Wikmark H, Lahl J, Maclot S, Squibb R J, Zhong S, Eng-Johnsson P, Arnold C L, Feifel R, Gisselbrecht M, Lindroth E, L’Huillier A 2022 Front. Phys. 10 964586Google Scholar

    [24]

    Huppert M, Jordan I, Baykusheva D, von Conta A, Wörner H J 2016 Phys. Rev. Lett. 117 093001Google Scholar

    [25]

    Zhong S, Vinbladh J, Busto D, Squibb R J, Isinger M, Neoričić L, Laurell H, Weissenbilder R, Arnold C L, Feifel R, Dahlström J M, Wendin G, Gisselbrecht M, Lindroth E, L’Huillier A 2020 Nat. Commun. 11 5042Google Scholar

    [26]

    Nandi S, Plésiat E, Zhong S, Palacios A, Busto D, Isinger M, Neoričić L, Arnold C L, Squibb R J, Feifel R, Decleva P, L’Huillier A, Martín F, Gisselbrecht M 2020 Sci. Adv. 6 eaba7762Google Scholar

    [27]

    Gong X, Jiang W, Tong J, Qiang J, Lu P, Ni H, Lucchese R, Ueda K, Wu J 2022 Phys. Rev. X 12 011002Google Scholar

    [28]

    Luo S, Weissenbilder R, Laurell H, Ammitzböll M, Poulain V, Busto D, Neoričić L, Guo C, Zhong S, Kroon D, Squibb R J, Feifel R, Gisselbrecht M, L’Huillier A, Arnold C L 2023 Adv. Phys.: X 8 2250105Google Scholar

    [29]

    Laurell H, Finkelstein-Shapiro D, Dittel C, Guo C, Demjaha R, Ammitzböll M, Weissenbilder R, Neoričić L, Luo S, Gisselbrecht M, Arnold C L, Buchleitner A, Pullerits T, L’Huillier A, Busto D 2022 Phys. Rev. Res. 4 033220Google Scholar

    [30]

    Laurell H, Luo S, Weissenbilder R, Ammitzböll M, Ahmed S, Söderberg H, Petersson C L M, Poulain V, Guo C, Dittel C, Finkelstein-Shapiro D, Squibb R J, Feifel R, Gisselbrecht M, Arnold C L, Buchleitner A, Lindroth E, Frisk Kockum A, L’Huillier A, Busto D 2025 Nat. Photonics 19 352Google Scholar

    [31]

    Li M, Xie M, Wang H, Jia L, Li J, Wang W, Cai J, Hong X, Shi X, Lv Y, Zhao X, Luo S, Jiang W C, Peng L Y, Ding D 2024 Phys. Rev. Lett. 133 253201Google Scholar

    [32]

    Kling M F, Vrakking M J 2008 Annu. Rev. Phys. Chem. 59 463Google Scholar

    [33]

    Calegari F, Sansone G, Stagira S, Vozzi C, Nisoli M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 062001Google Scholar

    [34]

    Jiang W, Armstrong G S J, Han L, Xu Y, Zuo Z, Tong J, Lu P, Dahlström J M, Ueda K, Brown A C, van der Hart H W, Gong X, Wu J 2023 Phys. Rev. Lett. 131 203201Google Scholar

    [35]

    Cruz-Rodriguez L, Dey D, Freibert A, Stammer P 2024 Nat. Rev. Phys. 6 691Google Scholar

    [36]

    Li M, Tang X, Wang H, Li J, Wang W, Cai J, Zhang J, San X, Zhao X, Ma P, Luo S, Jin C, Ding D 2025 Light: Sci. Appl. 14 181Google Scholar

    [37]

    Niu Y, Liang H, Liu Y, Liu F, Ma R, Ding D 2017 Chin. Phys. B 26 074222Google Scholar

    [38]

    Witting T, Osolodkov M, Schell F, Morales F, Patchkovskii S, Susnjar P, Cavalcante F, Menoni C, Schulz C, Furch F, Vrakking M 2022 Optica 9 145Google Scholar

    [39]

    Jiang W, Armstrong G S J, Tong J, Xu Y, Zuo Z, Qiang J, Lu P, Clarke D D A, Benda J, Fleischer A, Ni H, Ueda K, van der Hart H W, Brown A C, Gong X, Wu J 2022 Nat. Commun. 13 5072Google Scholar

    [40]

    Li M, Wang H, Li X, Wang J, Zhang J, San X, Ma P, Lu Y, Liu Z, Wang C, Yang Y, Luo S, Ding D 2023 J. Electron Spectrosc. Relat. Phenom. 263 147287Google Scholar

    [41]

    Behrens M, Englert L, Bayer T, Wollenhaupt M 2024 Rev. Sci. Instrum. 95 093101Google Scholar

    [42]

    Wang A L, Serov V V, Kamalov A, Bucksbaum P H, Kheifets A, Cryan J P 2021 Phys. Rev. A 104 063119Google Scholar

    [43]

    Hammerland D, Berglitsch T, Zhang P, Luu T T, Ueda K, Lucchese R R, Wörner H J 2024 Sci. Adv. 10 eadl3810Google Scholar

    [44]

    Isinger M, Squibb R J, Busto D, Zhong S, Harth A, Kroon D, Nandi S, Arnold C L, Miranda M, Dahlström J M, Lindroth E, Feifel R, Gisselbrecht M, L’ Huillier A 2017 Science 358 893Google Scholar

    [45]

    Zaïr A, Mével E, Cormier E, Constant E 2018 J. Opt. Soc. Am. B 35 A110Google Scholar

    [46]

    Ahmadi H, Kellerer S, Ertel D, Moioli M, Reduzzi M, Maroju P K, Jäger A, Shah R N, Lutz J, Frassetto F, Poletto L, Bragheri F, Osellame R, Pfeifer T, Schröter C D, Moshammer R, Sansone G 2020 J. Phys.: Photonics 2 024006Google Scholar

    [47]

    Chini M, Mashiko H, Wang H, Chen S, Yun C, Scott S, Gilbertson S, Chang Z 2009 Opt. Express 17 21459Google Scholar

    [48]

    Sabbar M, Heuser S, Boge R, Lucchini M, Gallmann L, Cirelli C, Keller U 2014 Rev. Sci. Instrum. 85 103113Google Scholar

    [49]

    Huppert M, Jordan I, Wörner H J 2015 Rev. Sci. Instrum. 86 123106Google Scholar

    [50]

    Weber S J, Manschwetus B, Billon M, Böttcher M, Bougeard M, Breger P, Géléoc M, Gruson V, Huetz A, Lin N, Picard Y J, Ruchon T, Salières P, Carré B 2015 Rev. Sci. Instrum. 86 033108Google Scholar

    [51]

    Luttmann M, Bresteau D, Hergott J F, Tcherbakoff O, Ruchon T 2021 Phys. Rev. Appl. 15 034036Google Scholar

    [52]

    Vaughan J, Bahder J, Unzicker B, Arthur D, Tatum M, Hart T, Harrison G, Burrows S, Stringer P, Laurent G M 2019 Opt. Express 27 30989Google Scholar

    [53]

    Luo S, Weissenbilder R, Laurell H, Bello R Y, Marante C, Ammitzböll M, Neoričić L, Ljungdahl A, Squibb R J, Feifel R, Gisselbrecht M, Arnold C L, Martín F, Lindroth E, Argenti L, Busto D, L’Huillier A 2024 Phys. Rev. Res. 6 043271Google Scholar

    [54]

    Muller H 2002 Appl. Phys. B 74 s17Google Scholar

    [55]

    Cavalieri A L, Müller N, Uphues T, Yakovlev V S, Baltuška A, Horvath B, Schmidt B, Blümel L, Holzwarth R, Hendel S, Drescher M, Kleineberg U, Echenique P M, Kienberger R, Krausz F, Heinzmann U 2007 Nature 449 1029Google Scholar

    [56]

    Vos J, Cattaneo L, Patchkovskii S, Zimmermann T, Cirelli C, Lucchini M, Kheifets A, Landsman A S, Keller U 2018 Science 360 1326Google Scholar

    [57]

    Cattaneo L, Vos J, Bello R Y, Palacios A, Heuser S, Pedrelli L, Lucchini M, Cirelli C, Martín F, Keller U 2018 Nat. Phys. 14 733Google Scholar

    [58]

    Kim K T, Ko D H, Park J, Tosa V, Nam C H 2010 New J. Phys. 12 083019Google Scholar

    [59]

    Gagnon J, Goulielmakis E, Yakovlev V S 2008 Appl. Phys. B 92 25Google Scholar

    [60]

    Lucchini M, Brügmann M, Ludwig A, Gallmann L, Keller U, Feurer T 2015 Opt. Express 23 29502Google Scholar

    [61]

    Schultze M, Fieß M, Karpowicz N, Gagnon J, Korbman M, Hofstetter M, Neppl S, Cavalieri A L, Komninos Y, Mercouris T, Nicolaides C A, Pazourek R, Nagele S, Feist J, Burgdörfer J, Azzeer A M, Ernstorfer R, Kienberger R, Kleineberg U, Goulielmakis E, Krausz F, Yakovlev V S 2010 Science 328 1658Google Scholar

    [62]

    Moore L R, Lysaght M A, Parker J S, van der Hart H W, Taylor K T 2011 Phys. Rev. A 84 061404Google Scholar

    [63]

    Feist J, Zatsarinny O, Nagele S, Pazourek R, Burgdörfer J, Guan X, Bartschat K, Schneider B I 2014 Phys. Rev. A 89 033417Google Scholar

    [64]

    Dahlström J M, Carette T, Lindroth E 2012 Phys. Rev. A 86 061402Google Scholar

    [65]

    Turconi M, Barreau L, Busto D, Isinger M, Alexandridi C, Harth A, Squibb R J, Kroon D, Arnold C L, Feifel R, Gisselbrecht M, Argenti L, Martín F, L’ Huillier A, Salières P 2020 J. Phys. B: At. Mol. Opt. Phys. 53 184003Google Scholar

    [66]

    Gruson V, Barreau L, Jiménez-Galan ff, Risoud F, Caillat J, Maquet A, Carré B, Lepetit F, Hergott J F, Ruchon T, Argenti L, Taïeb R, Martín F, Salières P 2016 Science 354 734Google Scholar

    [67]

    Wang H, Chini M, Chen S, Zhang C H, He F, Cheng Y, Wu Y, Thumm U, Chang Z 2010 Phys. Rev. Lett. 105 143002Google Scholar

    [68]

    Ott C, Kaldun A, Raith P, Meyer K, Laux M, Evers J, Keitel C H, Greene C H, Pfeifer T 2013 Science 340 716Google Scholar

    [69]

    Wickenhauser M, Burgdörfer J, Krausz F, Drescher M 2005 Phys. Rev. Lett. 94 023002Google Scholar

    [70]

    Zielinski A, Majety V P, Nagele S, Pazourek R, Burgdörfer J, Scrinzi A 2015 Phys. Rev. Lett. 115 243001Google Scholar

    [71]

    Agarwal G S, Haan S L, Cooper J 1984 Phys. Rev. A 29 2552Google Scholar

    [72]

    Vinbladh J, Dahlström J M, Lindroth E 2019 Phys. Rev. A 100 043424Google Scholar

    [73]

    Marante C, Klinker M, Corral I, González-Vázquez J, Argenti L, Martín F 2017 J. Chem. Theory Comput. 13 499Google Scholar

    [74]

    Carette T, Dahlström J M, Argenti L, Lindroth E 2013 Phys. Rev. A 87 023420Google Scholar

    [75]

    Harkema N, Cariker C, Lindroth E, Argenti L, Sandhu A 2021 Phys. Rev. Lett. 127 023202Google Scholar

    [76]

    Pabst S, Greenman L, Ho P J, Mazziotti D A, Santra R 2011 Phys. Rev. Lett. 106 053003Google Scholar

    [77]

    Nishi T, Lötstedt E, Yamanouchi K 2019 Phys. Rev. A 100 013421Google Scholar

    [78]

    Arnold C, Larivière-Loiselle C, Khalili K, Inhester L, Welsch R, Santra R 2020 J. Phys. B: At. Mol. Opt. Phys. 53 164006Google Scholar

    [79]

    Vrakking M J J 2021 Phys. Rev. Lett. 126 113203Google Scholar

    [80]

    Vinbladh J, Dahlström J M, Lindroth E 2022 Atoms 10 80Google Scholar

    [81]

    Maxwell A S, Madsen L B, Lewenstein M 2022 Nat. Commun. 13 4706Google Scholar

    [82]

    Cattaneo L, Pedrelli L, Bello R Y, Palacios A, Keathley P D, Martín F, Keller U 2022 Phys. Rev. Lett. 128 063001Google Scholar

    [83]

    Koll L M, Maikowski L, Drescher L, Witting T, Vrakking M J J 2022 Phys. Rev. Lett. 128 043201Google Scholar

    [84]

    Blavier M, Gelfand N, Levine R, Remacle F 2022 Chem. Phys. Lett. 804 139885Google Scholar

    [85]

    Blavier M, Levine R D, Remacle F 2022 Phys. Chem. Chem. Phys. 24 17516Google Scholar

    [86]

    Demekhin P V, Cederbaum L S 2012 Phys. Rev. Lett. 108 253001Google Scholar

    [87]

    Demekhin P V, Cederbaum L S 2013 Phys. Rev. A 88 043414Google Scholar

    [88]

    Baghery M, Saalmann U, Rost J M 2017 Phys. Rev. Lett. 118 143202Google Scholar

    [89]

    Jiang W C, Burgdörfer J 2020 Opt. Express 26 053424Google Scholar

    [90]

    Jiang W C, Chen S G, Peng L Y, Burgdörfer J 2020 Phys. Rev. Lett. 124 043203Google Scholar

    [91]

    Liang H, Jiang W C, Wang M X, Gong Q, Krajewska K, Peng L Y 2020 Phys. Rev. A 101 053424Google Scholar

    [92]

    Bertolino M, Carlström S, Peschel J, Zapata F, Lindroth E, Dahlström J M 2022 Phys. Rev. A 106 043108Google Scholar

  • [1] 邓意民, 张煜, 陆培祥, 曹伟. 基于水窗高次谐波阿秒光源的瞬态吸收光谱装置.  , 2025, 74(15): 153201. doi: 10.7498/aps.74.20250550
    [2] 卫孟昊, 李兴, 罗嗣佐, 赫兰海, 丁大军. 强场多光子跃迁干涉方法探测原子分子电离时间延迟.  , 2025, 74(15): 153301. doi: 10.7498/aps.74.20250647
    [3] 戈迪, 赵国鹏, 祁月盈, 陈晨, 高俊文, 侯红生. 等离子体环境中相对论效应对类氢离子光电离过程的影响.  , 2024, 73(8): 083201. doi: 10.7498/aps.73.20240016
    [4] 赵婷, 宫毛毛, 张松斌. 氦原子贝塞尔涡旋光电离的理论研究.  , 2024, 73(24): 244201. doi: 10.7498/aps.73.20241378
    [5] 汉琳, 苗淑莉, 李鹏程. 优化组合激光场驱动原子产生高次谐波及单个超短阿秒脉冲理论研究.  , 2022, 71(23): 233204. doi: 10.7498/aps.71.20221298
    [6] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展.  , 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [7] 柳钰, 徐忠锋, 王兴, 曾利霞, 刘婷. 光电离过程中Fe靶和V靶特征辐射的角相关研究.  , 2020, 69(4): 043201. doi: 10.7498/aps.69.20191524
    [8] 涂婧怡, 陈赦, 汪沨. 光电离速率影响大气压空气正流注分支的机理研究.  , 2019, 68(9): 095202. doi: 10.7498/aps.68.20190060
    [9] 李贵花, 谢红强, 姚金平, 储蔚, 程亚, 柳晓军, 陈京, 谢新华. 中红外飞秒激光场中氮分子高次谐波的多轨道干涉特性研究.  , 2016, 65(22): 224208. doi: 10.7498/aps.65.224208
    [10] 戚晓秋, 汪峰, 戴长建. 碱金属原子的光激发与光电离.  , 2015, 64(13): 133201. doi: 10.7498/aps.64.133201
    [11] 卢发铭, 夏元钦, 张盛, 陈德应. 飞秒强激光脉冲驱动Ne高次谐波蓝移产生相干可调谐极紫外光实验研究.  , 2013, 62(2): 024212. doi: 10.7498/aps.62.024212
    [12] 单晓斌, 赵玉杰, 孔蕊弘, 王思胜, 盛六四, 黄明强, 王振亚. ArCO团簇光电离的实验和理论研究.  , 2013, 62(5): 053602. doi: 10.7498/aps.62.053602
    [13] 孙长平, 王国利, 周效信. F3+和Ne4+离子的光电离截面的理论计算.  , 2011, 60(5): 053202. doi: 10.7498/aps.60.053202
    [14] 王向丽, 董晨钟, 桑萃萃. Ne原子的1s光电离及其Auger衰变过程的理论研究.  , 2009, 58(8): 5297-5303. doi: 10.7498/aps.58.5297
    [15] 顾 斌, 崔 磊, 曾祥华, 张丰收. 超强飞秒激光脉冲作用下氢分子的高次谐波行为——基于含时密度泛函理论的模拟.  , 2006, 55(6): 2972-2976. doi: 10.7498/aps.55.2972
    [16] 刘凌涛, 王民盛, 韩小英, 李家明. 溴的光电离和辐射复合——平均原子模型速率系数与细致组态速率系数.  , 2006, 55(5): 2322-2327. doi: 10.7498/aps.55.2322
    [17] 黄超群, 卫立夏, 杨 斌, 杨 锐, 王思胜, 单晓斌, 齐 飞, 张允武, 盛六四, 郝立庆, 周士康, 王振亚. HFC-152a的同步辐射真空紫外光电离和光解离研究.  , 2006, 55(3): 1083-1088. doi: 10.7498/aps.55.1083
    [18] 王思胜, 孔蕊弘, 田振玉, 单晓斌, 张允武, 盛六四, 王振亚, 郝立庆, 周士康. Ar?NO团簇的同步辐射光电离研究.  , 2006, 55(7): 3433-3437. doi: 10.7498/aps.55.3433
    [19] 曾志男, 李儒新, 谢新华, 徐至展. 采用双脉冲驱动产生高次谐波阿秒脉冲.  , 2004, 53(7): 2316-2319. doi: 10.7498/aps.53.2316
    [20] 方泉玉, 李萍, 刘勇, 邹宇, 邱玉波. Alq+(q=0—12)的光电离截面和Bethe系数.  , 2001, 50(4): 655-659. doi: 10.7498/aps.50.655
计量
  • 文章访问数:  518
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-23
  • 修回日期:  2025-05-19
  • 上网日期:  2025-05-29
  • 刊出日期:  2025-08-05

/

返回文章
返回
Baidu
map