搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于水窗高次谐波阿秒光源的瞬态吸收光谱装置研究

邓意民 张煜 陆培祥 曹伟

引用本文:
Citation:

基于水窗高次谐波阿秒光源的瞬态吸收光谱装置研究

邓意民, 张煜, 陆培祥, 曹伟

Apparatus for transient absorption spectroscopy based on water-window high-order harmonic attosecond light sources

DENG Yimin, ZHANG Yu, LU Peixiang, CAO Wei
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 以软X射线相干光源作为超快探针的瞬态吸收光谱技术在化学、生物、材料领域有着广泛的应用前景. 本文介绍一种基于桌面式软X射线光源的瞬态吸收装置的设计, 该装置利用短波红外激光来驱动软X射线高次谐波阿秒光源的产生, 最大光子能量进入水窗波段(>300 eV). 利用该装置开展了氩L边及碳K边瞬态吸收光谱的初步研究, 为实现元素分辨、时间分辨、跃迁通道分辨的电子动力学测量提供了重要的工具.
    Transient absorption spectroscopy using soft X-ray coherent light sources as ultrafast probes holds significant potential applications in chemistry, biology, and materials science. This article presents the design of a transient absorption apparatus based on desktop soft X-ray light sources. A commercial femtosecond laser system (4.4 mJ, 25 fs, 800 nm, 1 kHz) drives an optical parametric amplifier, generating a 900 μJ, 28 fs, 1440 nm short-wavelength infrared (SWIR) pulse. This SWIR pulse is spectrally broadened and temporally compressed into a few-cycle pulse (400 μJ, 16.5 fs, 1530 nm) by a hollow-core fiber compressor. Then, few-cycle SWIR pulse drives the generation of attosecond soft X-ray high-order harmonic radiation, with the maximum photon energy extending into the water window region (>300 eV). The spectral resolution of the soft X-ray spectrometer is determined to be 334 meV at 243 eV. The remaining 800 nm pump pulse from the OPA system is combined with the high-order harmonic soft X-ray probe by using a hole mirror, forming a Mach-Zehnder interferometer with a time jitter of less than10 fs during the one-hour data acquisition. This setup demonstrates the feasibility of performing time-resolved soft X-ray spectroscopy in a compact experimental configuration. Preliminary studies of transient absorption near the argon L-edge and carbon K-edge are conducted, demonstrating that this system can be used as a powerful tool for element-specific, time-resolved, and transition-channel-resolved investigations of electron dynamics.
  • 图 1  利用少周期短波红外激光产生软X射线进行瞬态吸收实验光路示意图

    Fig. 1.  Schematic of transient absorption experimental carried by soft X-ray generated by few-cycle infrared laser.

    图 2  少周期短波红外激光的产生光路示意图.

    Fig. 2.  Schematic of few-cycle SWIR laser generation.

    图 3  经过空芯光纤系统展宽后的短波红外光谱

    Fig. 3.  Spectrum of SWIR laser pulse after spectral broadening in hollow-core fiber.

    图 4  FROG脉宽测量结果 (a)测量得到的FROG trace; (b)重构得到的FROG trace; (c)重构得到的少周期短波红外光谱强度及相位; (d)重构得到的少周期短波红外时域结构

    Fig. 4.  Results of FROG measurement: (a) Measured FROG trace; (b) reconstructed FROG trace; (c) reconstructed spectral amplitude and phase of the few-cycle SWIR laser pulse; (d) constructed temporal structure of the SWIR laser pulse.

    图 5  产生软X射线高次谐波的气体靶室截面图

    Fig. 5.  Cross section view of the gas target for soft X-ray high harmonic generation.

    图 6  软X射线光谱仪

    Fig. 6.  Home-built soft X-ray spectrometer.

    图 7  不同气体产生的软X射线高次谐波光谱 (a)氖气; (b)氦气

    Fig. 7.  Soft X-ray high harmonic spectra from different gases: (a) Ne; (b) He.

    图 8  (a)氩气的二维静态吸收谱; (b)在氩的2p2/3–14s吸收线附近对(a)进行空间积分后的吸收线型, 红色实线表示利用洛伦兹线型与高斯函数卷积的拟合结果, 结果表明该光谱仪分辨率约为344 meV

    Fig. 8.  (a) Two-dimensional static absorption spectrum of Ar gas; (b) spatial integrated absorption spectrum in panel (a) near 2p2/3–14s transition line of Ar (blue), red solid line represents the fitting by convoluting the Lorentz line shape with a Gaussian function, the fitting results indicate that the spectrometer resolution is approximately 334 meV.

    图 9  (a)合频信号光谱随延时的变化, 白色圆圈线为合频信号中心波长位置; (b)合频信号中心波长随延时的变化(蓝线), 黄线是对蓝线的线性拟合

    Fig. 9.  (a) Sum-frequency generation spectrum as a function of delay, the white circles indicate the positions of central wavelength; (b) central wavelength of the sum-frequency generation as a function of delay (blue), yellow line represents the linear fitting of the blue line.

    图 10  3 h内相对延时的漂移曲线

    Fig. 10.  Relative delay drift over 3 h.

    图 11  氩原子的瞬态吸收实验结果

    Fig. 11.  Experimental results of transient absorption of helium atoms.

    图 12  吸收峰2p2/3–14s (a), 2p2/3–15s/3d (b)和 2p1/3–15s/3d (c)的强度随延迟的变化, 其中蓝色实线为实验数据, 红线为高斯拟合结果

    Fig. 12.  Intensity of the absorption peak 2p2/3–14s (a), 2p2/3–15s/3d (b) and 2p1/3–15s/3d (c) as a function of delay. The solid blue lines are the measured results, and the red lines represent the Gaussian fitting.

    图 13  CO2的瞬态吸收实验结果

    Fig. 13.  Experimental results of transient absorption of CO2.

    Baidu
  • [1]

    Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R, Krausz F 2010 Nature 466 739Google Scholar

    [2]

    Schultze M, Ramasesha K, Pemmaraju C, Sato S, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M, Leone S R 2014 Science 346 1348Google Scholar

    [3]

    Lucchini M, Sato S A, Ludwig A, Herrmann J, Volkov M, Kasmi L, Shinohara Y, Yabana K, Gallmann L, Keller U 2016 Science 353 916Google Scholar

    [4]

    Lysenko S, Rua A, Vikhnin V, Jimenez J, Fernandez F, Liu H 2006 Appl. Surf. Sci. 252 5512Google Scholar

    [5]

    Zhang G P, Hübner W 2000 Phys. Rev. Lett. 85 3025Google Scholar

    [6]

    Pertot Y, Schmidt C, Matthews M, Chauvet A, Huppert M, Svoboda V, von Conta A, Tehlar A, Baykusheva D, Wolf J P, Wörner H J 2017 Science 355 264Google Scholar

    [7]

    Barreau L, Ross A D, Garg S, Kraus P M, Neumark D M, Leone S R 2020 Sci. Rep. 10 5773Google Scholar

    [8]

    Zinchenko K S, Ardana-Lamas F, Lanfaloni V U, Luu T T, Pertot Y, Huppert M, Wörner H J 2023 Sci. Rep. 13 3059Google Scholar

    [9]

    Chew A, Douguet N, Cariker C, Li J, Lindroth E, Ren X, Yin Y, Argenti L, Hill W T, Chang Z 2018 Phys. Rev. A 97 031407Google Scholar

    [10]

    Saito N, Sannohe H, Ishii N, Kanai T, Kosugi N, Wu Y, Chew A, Han S, Chang Z, Itatani J 2019 Optica 6 1542Google Scholar

    [11]

    Saito N, Douguet N, Sannohe H, Ishii N, Kanai T, Wu Y, Chew A, Han S, Schneider B I, Olsen J, Argenti L, Chang Z, Itatani J 2021 Phys. Rev. Res. 3 043222Google Scholar

    [12]

    Zinchenko K S, Ardana-Lamas F, Seidu I, Neville S P, van der Veen J, Lanfaloni V U, Schuurman M S, Wörner H J 2021 Science 371 489Google Scholar

    [13]

    Smith A D, Balˇciunas T, Chang Y P, Schmidt C, Zinchenko K, Nunes F B, Rossi E, Svoboda V, Yin Z, Wolf J P, Wörner H J 2020 J. Phys. Chem. Lett. 11 1981Google Scholar

    [14]

    Van Kuiken B E, Cho H, Hong K, Khalil M, Schoenlein R W, Kim T K, Huse N 2016 J. Phys. Chem. Lett. 7 465Google Scholar

    [15]

    Garratt D, Misiekis L, Wood D, Larsen E W, Matthews M, Alexander O, Ye P, Jarosch S, Ferchaud C, Strüber C, Johnson A S, Bakulin A A, Penfold T J, Marangos J P 2022 Nat. Commun. 13 3414Google Scholar

    [16]

    Sekikawa T, Saito N, Kurimoto Y, Ishii N, Mizuno T, Kanai T, Itatani J, Saita K, Taketsugu T 2023 Phys. Chem. Chem. Phys. 25 8497Google Scholar

    [17]

    Bhattacherjee A, Pemmaraju C D, Schnorr K, Attar A R, Leone S R 2017 J. Am. Chem. Soc. 139 16576Google Scholar

    [18]

    Bhattacherjee A, Leone S R 2018 Acc. Chem. Res. 51 3203Google Scholar

    [19]

    Scutelnic V, Tsuru S, P´apai M, Yang Z, Epshtein M, Xue T, Haugen E, Kobayashi Y, Krylov A I, Møller K B, Coriani S, Leone S R 2021 Nat. Commun. 12 5003Google Scholar

    [20]

    Lee J P, Avni T, Alexander O, Maimaris M, Ning H, Bakulin A A, Burden P G, Moutoulas E, Georgiadou D G, Brahms C, Travers J C, Marangos J P, Ferchaud C 2024 Optica 11 1320Google Scholar

    [21]

    Ott C, Kaldun A, Argenti L, Raith P, Meyer K, Laux M, Zhang Y, Blättermann A, Hagstotz S, Ding T, Heck R, Madro˜nero J, Mart´ın F, Pfeifer T 2014 Nature 516 374Google Scholar

    [22]

    Teichmann S M, Silva F, Cousin S L, Hemmer M, Biegert J 2016 Nat. Commun. 7 11493Google Scholar

    [23]

    Popmintchev T, Chen M C, Bahabad A, Gerrity M, Sidorenko P, Cohen O, Christov I P, Murnane M M, Kapteyn H C 2009 Proc. Natl. Acad. Sci. U. S. A. 106 10516Google Scholar

    [24]

    Pupeikis J, Chevreuil P A, Bigler N, Gallmann L, Phillips C R, Keller U 2020 Optica 7 168Google Scholar

    [25]

    Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M, Chang Z 2017 Nat. Commun. 8 186

  • [1] 张春艳. H离子团簇高次谐波平台展宽与团簇膨胀.  , doi: 10.7498/aps.72.20230534
    [2] 麻永俊, 李睿晅, 李逵, 张光银, 钮津, 麻云凤, 柯长军, 鲍捷, 陈英爽, 吕春, 李捷, 樊仲维, 张晓世. 基于高次谐波X射线光源的三维纳米相干衍射成像技术.  , doi: 10.7498/aps.71.20220976
    [3] 姚惠东, 崔波, 马思琦, 余超, 陆瑞锋. 原子错位堆栈增强双层MoS2高次谐波产率.  , doi: 10.7498/aps.70.20210731
    [4] 徐佳伟, 许传喜, 张瑞田, 朱小龙, 冯文天, 赵冬梅, 梁贵云, 郭大龙, 高永, 张少锋, 苏茂根, 马新文. 态选择电荷交换实验测量以及对天体物理软X射线发射模型的检验.  , doi: 10.7498/aps.70.20201685
    [5] 范鑫, 梁红静, 单立宇, 闫博, 高庆华, 马日, 丁大军. 基于高次谐波产生的极紫外偏振涡旋光.  , doi: 10.7498/aps.69.20190834
    [6] 蔡怀鹏, 高健, 李博原, 刘峰, 陈黎明, 远晓辉, 陈民, 盛政明, 张杰. 相对论圆偏振激光与固体靶作用产生高次谐波.  , doi: 10.7498/aps.67.20181574
    [7] 李夏至, 邹德滨, 周泓宇, 张世杰, 赵娜, 余德尧, 卓红斌. 等离子体光栅靶的表面粗糙度对高次谐波产生的影响.  , doi: 10.7498/aps.66.244209
    [8] 罗香怡, 刘海凤, 贲帅, 刘学深. 非均匀激光场中氢分子离子高次谐波的增强.  , doi: 10.7498/aps.65.123201
    [9] 管仲, 李伟, 王国利, 周效信. 激光驱动晶体发射高次谐波的特性研究.  , doi: 10.7498/aps.65.063201
    [10] 俞祖卿, 何峰. 吸收多个远紫外光子生成的高次谐波的多重截止结构.  , doi: 10.7498/aps.65.224206
    [11] 余朝, 孙真荣, 郭东升. 高次谐波的Guo-Åberg-Crasemann理论及其截断定律.  , doi: 10.7498/aps.64.124207
    [12] 陈火耀, 刘正坤, 王庆博, 易涛, 杨国洪, 洪义麟, 付绍军. 软X射线全息平焦场光栅的条纹弯曲现象及其对光谱分辨率的影响.  , doi: 10.7498/aps.63.234203
    [13] 陈高, 杨玉军, 郭福明. 晶体环境下高次谐波谱的截止频率分析.  , doi: 10.7498/aps.62.083202
    [14] 刘正坤, 邱克强, 陈火耀, 刘颖, 徐向东, 付绍军, 王琛, 安红海, 方智恒. 软X射线双频光栅剪切干涉法研究.  , doi: 10.7498/aps.62.070703
    [15] 李会山, 李鹏程, 周效信. 强激光场中模型氢原子的势函数对产生高次谐波强度的影响.  , doi: 10.7498/aps.58.7633
    [16] 马天鹏, 胡立群, 陈开云. 通过软X射线信号研究芯部等离子体的结构.  , doi: 10.7498/aps.58.1110
    [17] 鄢 芬, 崔明启, 陈 凯, 孙立娟, 席识博, 周克瑾, 郑 雷, 赵屹东, 王占山, 朱京涛, 张 众, 赵 佳. 基于多层膜偏振元件的软X射线磁光Faraday偏转测量.  , doi: 10.7498/aps.57.2860
    [18] 王 琛, 王 伟, 吴 江, 董佳钦, 孙今人, 王瑞容, 傅思祖, 顾 援, 王世绩, 黄关龙, 林尊琪, 张国平, 张覃鑫, 郑无敌. 类镍钽x射线激光实验研究.  , doi: 10.7498/aps.53.3752
    [19] 王大威, 刘婷婷, 杨宏, 蒋红兵, 龚旗煌. 介质的非均匀性对高次谐波影响的研究.  , doi: 10.7498/aps.51.2034
    [20] 喻 胜, 李宏福, 谢仲怜, 罗 勇. 渐变复合腔回旋管高次谐波注-波互作用非线性模拟.  , doi: 10.7498/aps.49.2455
计量
  • 文章访问数:  373
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-25
  • 修回日期:  2025-05-12
  • 上网日期:  2025-05-17

/

返回文章
返回
Baidu
map