-
Transient absorption spectroscopy using soft X-ray coherent light sources as ultrafast probes holds significant potential applications in chemistry, biology, and materials science. This article presents the design of a transient absorption apparatus based on desktop soft X-ray light sources. A commercial femtosecond laser system (4.4 mJ, 25 fs, 800 nm, 1 kHz) drives an optical parametric amplifier, generating a 900 μJ, 28 fs, 1440 nm short-wavelength infrared (SWIR) pulse. This SWIR pulse is spectrally broadened and temporally compressed into a few-cycle pulse (400 μJ, 16.5 fs, 1530 nm) by a hollow-core fiber compressor. Then, few-cycle SWIR pulse drives the generation of attosecond soft X-ray high-order harmonic radiation, with the maximum photon energy extending into the water window region (>300 eV). The spectral resolution of the soft X-ray spectrometer is determined to be 334 meV at 243 eV. The remaining 800 nm pump pulse from the OPA system is combined with the high-order harmonic soft X-ray probe by using a hole mirror, forming a Mach-Zehnder interferometer with a time jitter of less than10 fs during the one-hour data acquisition. This setup demonstrates the feasibility of performing time-resolved soft X-ray spectroscopy in a compact experimental configuration. Preliminary studies of transient absorption near the argon L-edge and carbon K-edge are conducted, demonstrating that this system can be used as a powerful tool for element-specific, time-resolved, and transition-channel-resolved investigations of electron dynamics.
-
Keywords:
- high order harmonics /
- soft X-ray /
- transient absorption /
- water window
-
图 4 FROG脉宽测量结果 (a)测量得到的FROG trace; (b)重构得到的FROG trace; (c)重构得到的少周期短波红外光谱强度及相位; (d)重构得到的少周期短波红外时域结构
Fig. 4. Results of FROG measurement: (a) Measured FROG trace; (b) reconstructed FROG trace; (c) reconstructed spectral amplitude and phase of the few-cycle SWIR laser pulse; (d) constructed temporal structure of the SWIR laser pulse.
图 8 (a)氩气的二维静态吸收谱; (b)在氩的2p2/3–14s吸收线附近对(a)进行空间积分后的吸收线型, 红色实线表示利用洛伦兹线型与高斯函数卷积的拟合结果, 结果表明该光谱仪分辨率约为344 meV
Fig. 8. (a) Two-dimensional static absorption spectrum of Ar gas; (b) spatial integrated absorption spectrum in panel (a) near 2p2/3–14s transition line of Ar (blue), red solid line represents the fitting by convoluting the Lorentz line shape with a Gaussian function, the fitting results indicate that the spectrometer resolution is approximately 334 meV.
图 9 (a)合频信号光谱随延时的变化, 白色圆圈线为合频信号中心波长位置; (b)合频信号中心波长随延时的变化(蓝线), 黄线是对蓝线的线性拟合
Fig. 9. (a) Sum-frequency generation spectrum as a function of delay, the white circles indicate the positions of central wavelength; (b) central wavelength of the sum-frequency generation as a function of delay (blue), yellow line represents the linear fitting of the blue line.
图 12 吸收峰2p2/3–14s (a), 2p2/3–15s/3d (b)和 2p1/3–15s/3d (c)的强度随延迟的变化, 其中蓝色实线为实验数据, 红线为高斯拟合结果
Fig. 12. Intensity of the absorption peak 2p2/3–14s (a), 2p2/3–15s/3d (b) and 2p1/3–15s/3d (c) as a function of delay. The solid blue lines are the measured results, and the red lines represent the Gaussian fitting.
-
[1] Goulielmakis E, Loh Z H, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R, Krausz F 2010 Nature 466 739
Google Scholar
[2] Schultze M, Ramasesha K, Pemmaraju C, Sato S, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M, Leone S R 2014 Science 346 1348
Google Scholar
[3] Lucchini M, Sato S A, Ludwig A, Herrmann J, Volkov M, Kasmi L, Shinohara Y, Yabana K, Gallmann L, Keller U 2016 Science 353 916
Google Scholar
[4] Lysenko S, Rua A, Vikhnin V, Jimenez J, Fernandez F, Liu H 2006 Appl. Surf. Sci. 252 5512
Google Scholar
[5] Zhang G P, Hübner W 2000 Phys. Rev. Lett. 85 3025
Google Scholar
[6] Pertot Y, Schmidt C, Matthews M, Chauvet A, Huppert M, Svoboda V, von Conta A, Tehlar A, Baykusheva D, Wolf J P, Wörner H J 2017 Science 355 264
Google Scholar
[7] Barreau L, Ross A D, Garg S, Kraus P M, Neumark D M, Leone S R 2020 Sci. Rep. 10 5773
Google Scholar
[8] Zinchenko K S, Ardana-Lamas F, Lanfaloni V U, Luu T T, Pertot Y, Huppert M, Wörner H J 2023 Sci. Rep. 13 3059
Google Scholar
[9] Chew A, Douguet N, Cariker C, Li J, Lindroth E, Ren X, Yin Y, Argenti L, Hill W T, Chang Z 2018 Phys. Rev. A 97 031407
Google Scholar
[10] Saito N, Sannohe H, Ishii N, Kanai T, Kosugi N, Wu Y, Chew A, Han S, Chang Z, Itatani J 2019 Optica 6 1542
Google Scholar
[11] Saito N, Douguet N, Sannohe H, Ishii N, Kanai T, Wu Y, Chew A, Han S, Schneider B I, Olsen J, Argenti L, Chang Z, Itatani J 2021 Phys. Rev. Res. 3 043222
Google Scholar
[12] Zinchenko K S, Ardana-Lamas F, Seidu I, Neville S P, van der Veen J, Lanfaloni V U, Schuurman M S, Wörner H J 2021 Science 371 489
Google Scholar
[13] Smith A D, Balˇciunas T, Chang Y P, Schmidt C, Zinchenko K, Nunes F B, Rossi E, Svoboda V, Yin Z, Wolf J P, Wörner H J 2020 J. Phys. Chem. Lett. 11 1981
Google Scholar
[14] Van Kuiken B E, Cho H, Hong K, Khalil M, Schoenlein R W, Kim T K, Huse N 2016 J. Phys. Chem. Lett. 7 465
Google Scholar
[15] Garratt D, Misiekis L, Wood D, Larsen E W, Matthews M, Alexander O, Ye P, Jarosch S, Ferchaud C, Strüber C, Johnson A S, Bakulin A A, Penfold T J, Marangos J P 2022 Nat. Commun. 13 3414
Google Scholar
[16] Sekikawa T, Saito N, Kurimoto Y, Ishii N, Mizuno T, Kanai T, Itatani J, Saita K, Taketsugu T 2023 Phys. Chem. Chem. Phys. 25 8497
Google Scholar
[17] Bhattacherjee A, Pemmaraju C D, Schnorr K, Attar A R, Leone S R 2017 J. Am. Chem. Soc. 139 16576
Google Scholar
[18] Bhattacherjee A, Leone S R 2018 Acc. Chem. Res. 51 3203
Google Scholar
[19] Scutelnic V, Tsuru S, P´apai M, Yang Z, Epshtein M, Xue T, Haugen E, Kobayashi Y, Krylov A I, Møller K B, Coriani S, Leone S R 2021 Nat. Commun. 12 5003
Google Scholar
[20] Lee J P, Avni T, Alexander O, Maimaris M, Ning H, Bakulin A A, Burden P G, Moutoulas E, Georgiadou D G, Brahms C, Travers J C, Marangos J P, Ferchaud C 2024 Optica 11 1320
Google Scholar
[21] Ott C, Kaldun A, Argenti L, Raith P, Meyer K, Laux M, Zhang Y, Blättermann A, Hagstotz S, Ding T, Heck R, Madro˜nero J, Mart´ın F, Pfeifer T 2014 Nature 516 374
Google Scholar
[22] Teichmann S M, Silva F, Cousin S L, Hemmer M, Biegert J 2016 Nat. Commun. 7 11493
Google Scholar
[23] Popmintchev T, Chen M C, Bahabad A, Gerrity M, Sidorenko P, Cohen O, Christov I P, Murnane M M, Kapteyn H C 2009 Proc. Natl. Acad. Sci. U. S. A. 106 10516
Google Scholar
[24] Pupeikis J, Chevreuil P A, Bigler N, Gallmann L, Phillips C R, Keller U 2020 Optica 7 168
Google Scholar
[25] Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M, Chang Z 2017 Nat. Commun. 8 186
计量
- 文章访问数: 373
- PDF下载量: 21
- 被引次数: 0