搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

匀强电场作用下含表面活性剂的液滴动力学行为

胡浩然 刘茜 彭江 柴振华

引用本文:
Citation:

匀强电场作用下含表面活性剂的液滴动力学行为

胡浩然, 刘茜, 彭江, 柴振华

Dynamic behaviors of surfactant-containing droplets under a uniform electric field

HU Haoran, LIU Xi, PENG Jiang, CHAI Zhenhua
cstr: 32037.14.aps.74.20250071
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 利用基于相场理论的格子Boltzmann方法研究了匀强电场作用下含可溶性表面活性剂液滴的动力学行为. 首先通过模拟静态液滴表面活性剂浓度分布和漏电介质液滴在电场作用下形变两个基准问题验证了方法的可靠性. 其次, 本文重点研究了含表面活性剂液滴在电场作用下的形变、破裂和聚合行为. 研究发现, 对于形变行为, 单液滴存在扁长型和扁平型两种形变模式, 表面活性剂浓度越高, 液滴形变越大; 对于破裂行为, 单液滴存在细丝状和窄颈状两种破裂模式, 含表面活性剂的液滴更容易发生破裂行为; 对于聚合行为, 双液滴存在形变聚合和吸引聚合两种过程, 表面活性剂促进其形变聚合, 但抑制其吸引聚合.
    This paper adopts the phase-field based lattice Boltzmann (LB) method to study the dynamic behaviors of soluble surfactant-laden droplets in a uniform electric field. First, two benchmark problems including the surfactant concentration distribution on a static droplet and the deformation of a leaky dielectric droplet in an electric field, are used to validate the reliability of the LB method. Then, we investigate the deformation, breakup, and coalescence behaviors of surfactant-laden droplets in an electric field. The obtained results are shown below. 1) Regarding deformation, the single droplet exhibits two distinct deformation modes: Prolate and oblate shapes. A higher electric capillary number and a higher concentration of bulk surfactants both promote greater droplet deformation. 2) Regarding breakup, a single droplet exhibits two distinct breakup modes: filamentous breakup and conical jetting breakup. Droplets containing surfactants are more like to break up. Specifically, surfactants reduce the retraction degree of the main droplet after filamentous breakup, while increasing the number of satellite droplets formed at the ends of the main droplet after jetting breakup. 3) Regarding coalescence, the double droplets exhibit two distinct processes: deformation coalescence and attractive coalescence. A higher electric capillary number facilitates droplet coalescence. Surfactants promote the deformation coalescence while retarding attractive coalescence, but the promotional effect dominates. Consequently, a higher concentration of bulk surfactants will enhance the tendency of droplet coalescence.
      通信作者: 刘茜, aubrey_xixi@126.com
    • 基金项目: 国家自然科学基金(批准号: 123B2018, 12072127)和国家资助博士后研究人员计划(批准号:GZB20250714)资助的课题.
      Corresponding author: LIU Xi, aubrey_xixi@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 123B2018, 12072127) and the Postdoctoral Fellowship Program of CPSF (Grant No. GZB20250714).
    [1]

    Salipante P F, Vlahovska P M 2010 Phys. Fluids 22 112110Google Scholar

    [2]

    Stone H A, Stroock A D, Ajdari A 2004 Annu. Rev. Fluid Mech. 36 381Google Scholar

    [3]

    Manikantan H, Squires T M 2020 J. Fluid Mech. 892 1

    [4]

    O’konski C T, Thacher H C 1953 J. Phys. Chem. 57 955Google Scholar

    [5]

    Taylor G 1966 Proc. R. Soc. Lond. A 291 159Google Scholar

    [6]

    Sherwood J D 1988 J. Fluid Mech. 188 133Google Scholar

    [7]

    Tomar G, Gerlach D, Biswas G, Alleborn N, Sharma A, Durst F, Welch S W J, Delgado A 2007 J. Comput. Phys. 227 1267Google Scholar

    [8]

    Hua J S, Lim L K, Wang C H 2008 Phys. Fluids 20 113302Google Scholar

    [9]

    Teigen K E, Munkejord S T 2009 IEEE Trans. Dielectr. Electr. Insul. 16 475Google Scholar

    [10]

    Lin Y, Skjetne P, Carlson A 2012 Int. J. Multiphase Flow 45 1Google Scholar

    [11]

    Fakhari A, Bolster D 2017 J. Comput. Phys. 334 620Google Scholar

    [12]

    Yang Q, Li B Q, Ding Y 2013 Int. J. Multiphase Flow 57 1Google Scholar

    [13]

    Novick-Cohen A 2008 Handbook of Differential Equations: Evolutionary Equations (Vol. 4) (Amsterdam: North-Holland) p201

    [14]

    Liu X, Chai Z H, Shi B C 2019 Phys. Fluids 31 092103Google Scholar

    [15]

    Liu X, Chai Z H, Shi B C 2021 Commun. Comput. Phys. 30 1346Google Scholar

    [16]

    Liu X, Chai Z H, Shi B C, Yuan X L 2024 Physica D 468 134294Google Scholar

    [17]

    Feng J Q 2002 J. Colloid Interface Sci. 246 112Google Scholar

    [18]

    Cui Y T, Wang N N, Liu H H 2019 Phys. Fluids 31 022105Google Scholar

    [19]

    Baret J C 2012 Lab Chip 12 422Google Scholar

    [20]

    Anna S L 2016 Annu. Rev. Fluid Mech. 48 285Google Scholar

    [21]

    Liu H H, Zhang Y H 2010 J. Comput. Phys. 229 9166Google Scholar

    [22]

    Ceniceros H D 2003 Phys. Fluids 15 245Google Scholar

    [23]

    Wooding R A, Morel–Seytoux H J 1976 Annu. Rev. Fluid Mech. 8 233Google Scholar

    [24]

    van der Sman R G M, van der Graaf S 2006 Rheol. Acta 46 3Google Scholar

    [25]

    van der Sman R G M, Meinders M B J 2016 Comput. Phys. Commun. 199 12Google Scholar

    [26]

    Shi Y, Tang G H, Cheng L H, Shuang H Q 2019 Comput. Fluids 179 508Google Scholar

    [27]

    Zong Y J, Zhang C H, Liang H, Wang L, Xu J R 2020 Phys. Fluids 32 122105Google Scholar

    [28]

    Ha J W, Yang S M 1995 J. Colloid Interface Sci. 175 369Google Scholar

    [29]

    Nganguia H, Young Y N, Vlahovska P M, Blawzdziewicz J, Zhang J, Lin H 2013 Phys. Fluids 25 092106Google Scholar

    [30]

    Painuly R, Kumar S, Anand V 2024 Colloids Surf., A 697 134389Google Scholar

    [31]

    Teigen K E, Munkejord S T 2010 Phys. Fluids 22 112104Google Scholar

    [32]

    Sorgentone C, Tornberg A, Vlahovska P M 2019 J. Comput. Phys. 389 111Google Scholar

    [33]

    Ha J W, Yang S M 1998 J. Colloid Interface Sci. 206 195Google Scholar

    [34]

    Li N, Pang Y, Sun Z, Li W, Sun Y, Sun X, Liu Y, Li B, Wang Z, Zeng H 2024 Fuel 358 130328Google Scholar

    [35]

    Wang H L, Chai Z H, Shi B C, Liang H 2016 Phys. Rev. E 94 033304Google Scholar

    [36]

    Soligo G, Roccon A, Soldati A 2019 J. Comput. Phys. 376 1292Google Scholar

    [37]

    Yun A, Li Y, Kim J 2014 Appl. Math. Comput. 229 422

    [38]

    Chang C H, Franses E I 1995 Colloids Surf., A 100 1Google Scholar

    [39]

    Qian Y H, D’Humières D, Lallemand P 1992 EPL 17 479Google Scholar

    [40]

    Guo Z L, Shu C 2013 Lattice Boltzmann Method and Its Application in Engineering (Vol. 3) (Singapore: World Scientific) pp35–59

    [41]

    Dong Q, Sau A 2018 Phys. Rev. Fluids 3 073701Google Scholar

  • 图 1  匀强电场作用下含表面活性剂液滴示意图

    Fig. 1.  Schematic diagram of a surfactant-laden droplet in a uniform electric field.

    图 2  表面活性剂浓度的数值解与解析解对比

    Fig. 2.  A comparison between the numerical simulation and analytical solution of surfactant concentration.

    图 3  干净液滴 (a) 扁长型$ [(S, R) = (3.5, 4.75)] $, $ u_{{\mathrm{max}}} = $$ 0.00020 $; (b) 扁平型$ [(S, R) = (3.5, 1.75)] $,$ u_{{\mathrm{max}}} = 0.00043 $

    Fig. 3.  Clean droplet: (a) Prolate droplet $ [(S, R) = (3.5, $$ 4.75)] $, $ u_{{\mathrm{max}}} = 0.00020 $; (b) oblate droplet $ [(S, R) = (3.5, $$ 1.75)] $, $ u_{{\mathrm{max}}} = 0.00043 $.

    图 4  含表面活性剂液滴 (a) 扁长型$ [(S, R) = (3.5, 4.75)] $, $ u_{{\mathrm{max}}} = 0.00016 $; (b) 扁平型$ [(S, R) = (3.5, 1.75)] $, $ u_{{\mathrm{max}}} = $ 0.00034

    Fig. 4.  Surfactant-laden droplet: (a) Prolate droplet $ [(S, R) = $$ (3.5, 4.75)] $, $ u_{{\mathrm{max}}} = 0.00016 $; (b) oblate droplet $ [(S, R) = $$ (3.5, 1.75)] $, $ u_{{\mathrm{max}}} = 0.00034 $.

    图 5  电毛细数对液滴形变因子的影响

    Fig. 5.  The effect of electric capillary number on the deformation factor of droplet.

    图 6  体相区表面活性剂浓度对液滴形变因子的影响

    Fig. 6.  The effect of bulk surfactant concentration on the deformation factor of the droplet.

    图 7  表面活性剂对扁长型液滴形变过程的影响

    Fig. 7.  The effect of surfactant on deformation factor of prolate droplet.

    图 8  液滴的细丝状破裂过程 (a) 干净液滴($ \psi_{\mathrm{b}} = 0 $); (b) 含表面活性剂液滴($ \psi_{\mathrm{b}} = 0.5 $)

    Fig. 8.  The filamentous breakup process of droplet: (a) Clean droplet with $ \psi_{\mathrm{b}} = 0 $; (b) surfactant-laden droplet with $ \psi_{\mathrm{b}} = 0.5 $.

    图 9  液滴形变过程中电场力与表面张力的比较

    Fig. 9.  A comparison between the electric field force and the surface tension force during the droplet deformation process.

    图 10  液滴破裂后电场力与表面张力的比较

    Fig. 10.  A comparison between the electric field force and the surface tension after the breakup of droplet.

    图 11  液滴破裂后中轴线上的表面张力分布

    Fig. 11.  The distribution of surface tension along the central line after the breakup of droplet.

    图 12  液滴的窄颈状破裂过程 (a) 干净液滴($ \psi_{\mathrm{b}} = 0 $); (b) 含表面活性剂液滴($ \psi_{\mathrm{b}} = 0.5 $)

    Fig. 12.  The conical jetting breakup process of droplet: (a) Clean droplet with $ \psi_{\mathrm{b}} = 0 $; (b) surfactant-laden droplet with $ \psi_{\mathrm{b}} = 0.5 $

    图 13  两种液滴破裂6T后末端的状态

    Fig. 13.  The end states of two kinds of droplets after they break up at 6T.

    图 14  电场作用下双液滴物理工况示意图

    Fig. 14.  The schematic of two droplets under the effect of the electric field.

    图 15  体相区表面活性剂浓度和介电系数比对双液滴动力学的影响

    Fig. 15.  The effects of bulk surfactant concentration and permittivity ratio on the dynamics of two droplets.

    图 16  当$ S = 2.2 $, $ t = 30 T $时, 两液滴状态 (a) 干净液滴不聚合状态, $ u_{{\mathrm{max}}} = 0.00086 $; (b) 含表面活性剂液滴聚合状态($ \psi_{\mathrm{b}} = 0.5 $), $ u_{{\mathrm{max}}} = 0.00274 $

    Fig. 16.  The states of the two droplets under $ S = 2.2 $ and $ t = 30 T $: (a) Two clean droplets without coalescence, $ u_{{\mathrm{max}}} = 0.00086 $; (b) the coalescence of two surfactant-laden droplets ($ \psi_{\mathrm{b}} = 0.5 $), $ u_{{\mathrm{max}}} = 0.00274 $.

    图 17  两液滴质心距离随时间的变化

    Fig. 17.  The evolution of distance between two droplets.

    图 18  体相区表面活性剂浓度和电毛细数对双液滴的影响

    Fig. 18.  The effects of bulk surfactant concentration and electric capillary number on state of two droplets.

    表 1  漏电介质液滴形变因子的数值解和理论解对比

    Table 1.  A comparison between the numerical results and analytical solution of the deformation factor of leaky dielectric droplet.

    $ R $ $ S $ $ Ca_{\mathrm{E}} $ 形变因子$ D $
    本文结果 Taylor[5] Feng[17] Liu等[14] 其他数值结果
    5 5 0.2 0.03543 0.03670 0.02960 0.03524 0.04080[10]
    5 60 0.2 –0.25758 –0.40520 –0.27590 –0.25708 –0.25980[10]
    1 2 0.2 –0.04826 –0.04380 –0.05000 –0.04751 –0.02377[10]
    50 2 0.2 0.10733 0.10690 0.06520 0.10756 0.09931[10]
    1.75 3.5 0.1 –0.02065 –0.02230 –0.02070 –0.02232 –0.02198[18]
    3.25 3.5 0.1 0.00888 0.00850 0.00800 0.00833 0.00879[18]
    4.75 3.5 0.1 0.02102 0.00228 0.01800 0.01953 0.02088[18]
    下载: 导出CSV
    Baidu
  • [1]

    Salipante P F, Vlahovska P M 2010 Phys. Fluids 22 112110Google Scholar

    [2]

    Stone H A, Stroock A D, Ajdari A 2004 Annu. Rev. Fluid Mech. 36 381Google Scholar

    [3]

    Manikantan H, Squires T M 2020 J. Fluid Mech. 892 1

    [4]

    O’konski C T, Thacher H C 1953 J. Phys. Chem. 57 955Google Scholar

    [5]

    Taylor G 1966 Proc. R. Soc. Lond. A 291 159Google Scholar

    [6]

    Sherwood J D 1988 J. Fluid Mech. 188 133Google Scholar

    [7]

    Tomar G, Gerlach D, Biswas G, Alleborn N, Sharma A, Durst F, Welch S W J, Delgado A 2007 J. Comput. Phys. 227 1267Google Scholar

    [8]

    Hua J S, Lim L K, Wang C H 2008 Phys. Fluids 20 113302Google Scholar

    [9]

    Teigen K E, Munkejord S T 2009 IEEE Trans. Dielectr. Electr. Insul. 16 475Google Scholar

    [10]

    Lin Y, Skjetne P, Carlson A 2012 Int. J. Multiphase Flow 45 1Google Scholar

    [11]

    Fakhari A, Bolster D 2017 J. Comput. Phys. 334 620Google Scholar

    [12]

    Yang Q, Li B Q, Ding Y 2013 Int. J. Multiphase Flow 57 1Google Scholar

    [13]

    Novick-Cohen A 2008 Handbook of Differential Equations: Evolutionary Equations (Vol. 4) (Amsterdam: North-Holland) p201

    [14]

    Liu X, Chai Z H, Shi B C 2019 Phys. Fluids 31 092103Google Scholar

    [15]

    Liu X, Chai Z H, Shi B C 2021 Commun. Comput. Phys. 30 1346Google Scholar

    [16]

    Liu X, Chai Z H, Shi B C, Yuan X L 2024 Physica D 468 134294Google Scholar

    [17]

    Feng J Q 2002 J. Colloid Interface Sci. 246 112Google Scholar

    [18]

    Cui Y T, Wang N N, Liu H H 2019 Phys. Fluids 31 022105Google Scholar

    [19]

    Baret J C 2012 Lab Chip 12 422Google Scholar

    [20]

    Anna S L 2016 Annu. Rev. Fluid Mech. 48 285Google Scholar

    [21]

    Liu H H, Zhang Y H 2010 J. Comput. Phys. 229 9166Google Scholar

    [22]

    Ceniceros H D 2003 Phys. Fluids 15 245Google Scholar

    [23]

    Wooding R A, Morel–Seytoux H J 1976 Annu. Rev. Fluid Mech. 8 233Google Scholar

    [24]

    van der Sman R G M, van der Graaf S 2006 Rheol. Acta 46 3Google Scholar

    [25]

    van der Sman R G M, Meinders M B J 2016 Comput. Phys. Commun. 199 12Google Scholar

    [26]

    Shi Y, Tang G H, Cheng L H, Shuang H Q 2019 Comput. Fluids 179 508Google Scholar

    [27]

    Zong Y J, Zhang C H, Liang H, Wang L, Xu J R 2020 Phys. Fluids 32 122105Google Scholar

    [28]

    Ha J W, Yang S M 1995 J. Colloid Interface Sci. 175 369Google Scholar

    [29]

    Nganguia H, Young Y N, Vlahovska P M, Blawzdziewicz J, Zhang J, Lin H 2013 Phys. Fluids 25 092106Google Scholar

    [30]

    Painuly R, Kumar S, Anand V 2024 Colloids Surf., A 697 134389Google Scholar

    [31]

    Teigen K E, Munkejord S T 2010 Phys. Fluids 22 112104Google Scholar

    [32]

    Sorgentone C, Tornberg A, Vlahovska P M 2019 J. Comput. Phys. 389 111Google Scholar

    [33]

    Ha J W, Yang S M 1998 J. Colloid Interface Sci. 206 195Google Scholar

    [34]

    Li N, Pang Y, Sun Z, Li W, Sun Y, Sun X, Liu Y, Li B, Wang Z, Zeng H 2024 Fuel 358 130328Google Scholar

    [35]

    Wang H L, Chai Z H, Shi B C, Liang H 2016 Phys. Rev. E 94 033304Google Scholar

    [36]

    Soligo G, Roccon A, Soldati A 2019 J. Comput. Phys. 376 1292Google Scholar

    [37]

    Yun A, Li Y, Kim J 2014 Appl. Math. Comput. 229 422

    [38]

    Chang C H, Franses E I 1995 Colloids Surf., A 100 1Google Scholar

    [39]

    Qian Y H, D’Humières D, Lallemand P 1992 EPL 17 479Google Scholar

    [40]

    Guo Z L, Shu C 2013 Lattice Boltzmann Method and Its Application in Engineering (Vol. 3) (Singapore: World Scientific) pp35–59

    [41]

    Dong Q, Sau A 2018 Phys. Rev. Fluids 3 073701Google Scholar

  • [1] 赖瑶瑶, 陈鑫梦, 柴振华, 施保昌. 基于格子Boltzmann方法的钉扎螺旋波反馈控制.  , 2024, 73(4): 040502. doi: 10.7498/aps.73.20231549
    [2] 张森, 娄钦. 电场作用下锥翅表面强化池沸腾换热的介观数值方法.  , 2024, 73(2): 026401. doi: 10.7498/aps.73.20231141
    [3] 张晓林, 黄军杰. 楔形体上复合液滴润湿铺展行为的格子Boltzmann方法研究.  , 2023, 72(2): 024701. doi: 10.7498/aps.72.20221472
    [4] 刘高洁, 邵子宇, 娄钦. 多孔介质中含溶解反应的互溶驱替过程格子Boltzmann研究.  , 2022, 71(5): 054702. doi: 10.7498/aps.71.20211851
    [5] 刘高洁, 邵子宇, 娄钦. 多孔介质中含有溶解反应的互溶驱替过程格子Boltzmann研究.  , 2021, (): . doi: 10.7498/aps.70.20211851
    [6] 李玉杰, 黄军杰, 肖旭斌. 液滴撞击圆柱内表面的数值研究.  , 2018, 67(18): 184701. doi: 10.7498/aps.67.20180364
    [7] 何宗旭, 严微微, 张凯, 杨向龙, 魏义坤. 底部局部加热多孔介质自然对流传热的格子Boltzmann模拟.  , 2017, 66(20): 204402. doi: 10.7498/aps.66.204402
    [8] 梁宏, 柴振华, 施保昌. 分叉微通道内液滴动力学行为的格子Boltzmann方法模拟.  , 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [9] 黄虎, 洪宁, 梁宏, 施保昌, 柴振华. 液滴撞击液膜过程的格子Boltzmann方法模拟.  , 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [10] 张婷, 施保昌, 柴振华. 多孔介质内溶解与沉淀过程的格子Boltzmann方法模拟.  , 2015, 64(15): 154701. doi: 10.7498/aps.64.154701
    [11] 张娅, 潘光, 黄桥高. 疏水表面减阻的格子Boltzmann方法数值模拟.  , 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [12] 解文军, 滕鹏飞. 声悬浮过程的格子Boltzmann方法研究.  , 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [13] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法.  , 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [14] 黄桥高, 潘光, 宋保维. 疏水表面滑移流动及减阻特性的格子Boltzmann方法模拟.  , 2014, 63(5): 054701. doi: 10.7498/aps.63.054701
    [15] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟.  , 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [16] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟.  , 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [17] 曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明. 格子Boltzmann方法在相变过程中的应用.  , 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [18] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟.  , 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [19] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟.  , 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [20] 李华兵, 黄乒花, 刘慕仁, 孔令江. 用格子Boltzmann方法模拟MKDV方程.  , 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
计量
  • 文章访问数:  381
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-16
  • 修回日期:  2025-05-12
  • 上网日期:  2025-05-20

/

返回文章
返回
Baidu
map