搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HL-3装置中性粒子与碳杂质影响偏滤器脱靶的模拟研究

周雨林 吴雪科 徐欣亮 肖国梁 龙婷 高金明 范冬梅 孟晗琪 赵真 王占辉

引用本文:
Citation:

HL-3装置中性粒子与碳杂质影响偏滤器脱靶的模拟研究

周雨林, 吴雪科, 徐欣亮, 肖国梁, 龙婷, 高金明, 范冬梅, 孟晗琪, 赵真, 王占辉

Simulation research on effect of neutrals and carbon impurities on divertor detachment in HL-3 tokamak

ZHOU Yulin, WU Xueke, XU Xinliang, XIAO Guoliang, LONG Ting, GAO Jinming, FAN Dongmei, MENG Hanqi, ZHAO Zhen, WANG Zhanhui
cstr: 32037.14.aps.74.20250065
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 偏滤器脱靶是中国环流三号装置(HL-3)偏滤器热负载的主要控制手段. 然而目前的脱靶工作缺少对刮削层-偏滤器区域内复杂多成分粒子问题的研究, 如氢同位素(如氘)、外部注入杂质(如氖杂质)、内部固有杂质(如碳杂质)的碰撞、辐射等过程. 本工作使用新开发的刮削层-偏滤器多成分粒子输运程序SD1D, 研究了碳杂质和中性粒子对中国环流三号上抬升等离子体密度和偏滤器氖气注入两种脱靶方式的影响. 研究发现, 偏滤器产生的碳杂质对于抬升密度的脱靶方式具有促进作用, 但是对注入氖气实现脱靶的过程影响较小. 此外, 本工作还发现中性粒子(氘原子与氘分子)在这两种脱靶过程中的重要性也有很大的差别: 抬升等离子体密度可以促进偏滤器内再循环过程产生大量中性粒子, 等离子体与中性粒子反应导致的能量与动量损失是实现脱靶的关键因素; 向偏滤器内注入氖气直接降低了靶板上饱和电流, 抑制了再循环过程, 中性粒子的重要性也随之降低.
    Divertor detachment is a critical technique for managing the thermal load on the divertor of the HL-3 tokamak, an important device in magnetic confinement fusion research. However, existing studies on detachment have largely overlooked the complex multi-species particle dynamics in the scrape-off layer (SOL) and divertor regions, particularly the interactions involving hydrogen isotopes (e.g, deuterium), externally injected impurities (e.g, neon), and intrinsic impurities (e.g, carbon). This study aims to address this problem by employing the newly developed multi-species particle transport code SD1D to investigate the effects of carbon impurities and neutral particles on two detachment scenarios in HL-3: plasma density ramp-up and neon injection into the divertor.The SD1D code models the transport, collision, and radiation processes of various particles, including deuterium ions, atoms, and molecules, as well as carbon and neon impurities, along the magnetic field lines from the SOL upstream to the divertor target. The study focuses on understanding how carbon impurities and neutral particles affect the detachment mechanisms under different conditions.The results reveal that carbon impurities generated in the divertor significantly enhance the detachment in the density ramp-up scenario by increasing the density of deuterium atoms, molecules, and ions near the target plate, thereby increasing the total radiation power. This effect lowers the density threshold required for detachment and reduces the peak current on the target plate. However, carbon impurities have a minimal influence on detachment achieved through neon injection, as they do not significantly change the density of deuterium species or the total radiation power in this scenario.Furthermore, this study highlights the distinct roles of neutral particles in the two detachment mechanisms. In the density ramp-up scenario, the increased plasma density promotes the recycling process in the divertor, generating a substantial population of neutral particles. The energy loss and momentum loss resulting from plasma-neutral interactions are crucial for achieving detachment. In contrast, neon injection directly reduces the saturation current on the target plate, suppressing the recycling process and diminishing the importance of neutral particles.In conclusion, this work demonstrates that carbon impurities play a significant role in facilitating detachment during plasma density ramp-up but have limited influence on detachment via neon injection. The findings underscore the importance of considering multi-species particle dynamics, including neutral particles and impurities, in understanding and optimizing divertor detachment strategies. Future work will involve validating the SD1D model based on experimental data from HL-3 to further refine its predictiveness.
      通信作者: 徐欣亮, xuxinliang@swip.ac.cn
    • 基金项目: 国家磁约束核聚变能发展研究专项(批准号: 2022YFE03030002, 2022YFE03100004)、国家自然科学基金(批准号: 12375210, 11805055, 12175054, 12305235, 12175056, 12275072)和四川省杰出青年科学基金(批准号: 2024NSFJQ0067)资助的课题.
      Corresponding author: XU Xinliang, xuxinliang@swip.ac.cn
    • Funds: Project supported by the National Magnetic Confinement Fusion Research Program of China (Grant Nos. 2022YFE03030002, 2022YFE03100004), the National Natural Science Foundation of China (Grant Nos. 12375210, 11805055, 12175054, 12305235, 12175056, 12275072), and the Natural Science Funds for Distinguished Young Scholars of Sichuan Province, China (Grant No. 2024NSFJQ0067).
    [1]

    Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (CRC Press

    [2]

    Kallenbach A, Bernert M, Dux R, Reimold F, Wischmeier M, ASDEX Upgrade Team 2016 Plasma Phys. Contr. Fusion 58 045013Google Scholar

    [3]

    Stangeby P C 2018 Plasma Phys. Contr. Fusion 60 044022Google Scholar

    [4]

    Verhaegh K, Lipschultz B, Bowman C, Duval B P, Fantz U, Fil A, Harrison J R, Moulton D, Myatra O, Wünderlich D, Federici F 2021 Plasma Phys. Contr. Fusion 63 035018Google Scholar

    [5]

    Kunze H J 2009 Springer Science & Business Media 56 34

    [6]

    Bernert M, Wischmeier M, Huber A, Reimold F, Lipschultz B, Lowry C, Brezinsek S, Dux R, Eich T, Kallenbach A, Lebschy A 2017 Nucl. Mater. Energy 12 111Google Scholar

    [7]

    Wu T, Nie L, Yu Y, Gao J M, Li J Y, Ma H C, Wen J, Ke R, Wu N, Huang Z H, Liu L, Zheng D L, Yi K Y, Gao X Y, Wang W C, Cheng J, Yan L W, Cai L Z, Wang Z H, Xu M 2023 Plasma Sci. Tech. 25 015102Google Scholar

    [8]

    Zhou Y, Dudson B, Militello F, Verhaegh K, Myatra O 2022 Plasma Phys. Contr. Fusion 64 065006.Google Scholar

    [9]

    Boedo J, Gray D, Chousal L, Conn R, Hiller B, Finken K. H 1998 Rev. Sci. Instrum. 69 2663Google Scholar

    [10]

    Boedo J A, Crocker N, Chousal L, Hernandez R, Chalfant J, Kugel H, Roney P, Wertenbaker J, NSTX Team 2009 Rev. Sci. Instrum. 80 123506Google Scholar

    [11]

    Clark J G, Bowden M D, Scannell R 2021 Rev. Sci. Instrum. 92 043545Google Scholar

    [12]

    Makarov S O, Coster D P, Kaveeva E G, Rozhansky V A, Senichenkov I Y, Veselova I Y, Voskoboynikov S P, Stepanenko A A, Bonnin X, Pitts R A 2023 Nucl. Fusion 63 026014.Google Scholar

    [13]

    Mailloux J, Abid N, Abraham K, Abreu P, Adabonyan O, Adrich P, Afanasev V, Afzal M, Ahlgren T, Aho-Mantila L, Aiba N 2022 Nucl. Fusion 62 042026Google Scholar

    [14]

    Fil A, Lipschultz B, Moulton D, Thornton A, Dudson B D, Myatra O, Verhaegh K, EUROfusion MST1 Team 2022 Nucl. Fusion 62 096026Google Scholar

    [15]

    Myatra O, Moulton D, Dudson B, Lipschultz B, Newton S, Verhaegh K, Fil A 2023 Nucl. Fusion 63 076030Google Scholar

    [16]

    Verhaegh K, Lipschultz B, Duval B P, Harrison J R, Reimerdes H, Theiler C, Labit B, Maurizio R, Marini C, Nespoli F, Sheikh U 2017 Nucl. Mater. Energy 12 1112.Google Scholar

    [17]

    Gao J M, Cai L Z, Cao C Z, Ma H C, Ke R, Wu N, Hu Y, Gao X Y, Cui C H, Huang Z H, Nie L 2023 Nucl. Fusion 63 036006Google Scholar

    [18]

    龙婷, 柯锐, 吴婷, 高金明, 才来中, 王占辉, 许敏 2024 . 73 088901Google Scholar

    Long T, Ke R, Wu T, Gao J M, Cai L Z, Wang Z H, Xu M, 2024 Acta Phys. Sin. 73 088901Google Scholar

    [19]

    Wu N, Cheng J, Yi K Y, Wang R, Han M K, Huang Z H, Wang W C, He Y, Yan L W, Du H L, Gao J M 2024 Nucl. Fusion 64 096007Google Scholar

    [20]

    Liu J B, Wang L, Guo H Y, Wang H Q, Xu G S, Ding F, Xu J C, Liu X J, Yuan Q P, Wu K, Liu S C 2019 Nucl. Fusion 59 126046Google Scholar

    [21]

    Dudson B. D, Allen J, Body T, Chapman B, Lau C, Townley L, Moulton D, Harrison J, Lipschultz B 2019 Plasma Phys. Contr. Fusion 61 065008Google Scholar

    [22]

    Kallenbach A, Bernert M, Dux R, Eich T, Henderson S S, Pütterich T, Reimold F, Rohde V, Sun H J, ASDEX Upgrade Team 2019 Nucl. Mater. Energy 18 166Google Scholar

    [23]

    Zhou Y, Dudson B, Wu T, Wang Z, Xia T, Zhong C, Gao J, Du H, Fan D 2024 Plasma Phys. Contr. Fusion 66 055005Google Scholar

  • 图 1  托卡马克磁约束聚变装置截面结构

    Fig. 1.  Power exhaust on tokamak plasma cross-section.

    图 2  刮削层-偏滤器区域等离子体热流通道(沿磁力线方向)与主要反应

    Fig. 2.  Heat flux flowing along the field line and the main reactions in scrape-off layer (SOL) and divertor region.

    图 3  氖气注入偏滤器在沿磁力线方向形成的源剖面 $ {S}_{{{\mathrm{N}}{\mathrm{e}}}^{0}} $

    Fig. 3.  The source profile $ {S}_{{{\mathrm{N}}{\mathrm{e}}}^{0}} $ of neon injection into divertor

    图 4  刮削层-偏滤器碳杂质含量的影响 (a)抬升上游等离子体密度触发偏滤器脱靶; (b)氖杂质注入偏滤器脱靶. 蓝色曲线表示靶板上电流$ {J}_{{\mathrm{s}}{\mathrm{a}}{\mathrm{t}}, {\mathrm{t}}{\mathrm{a}}{\mathrm{r}}{\mathrm{g}}{\mathrm{e}}{\mathrm{t}}} $, 红色曲线表示靶板上电子温度, 碳杂质含量$ {f}_{{\mathrm{C}}} $分别为0, 1%和3%

    Fig. 4.  The effect of carbon concentration in SOL and divertor region on two different divertor detachment regimes: (a) Density ramp induced detachment; (b) neon injection induced detachment. The blue curves and red curves represent the current and the electron temperature on the divertor target (three carbon concentrations used in simulations are 0, 1%, and 3%).

    图 5  刮削层-偏滤器碳杂质含量($ {f}_{{\mathrm{C}}}=0, {\mathrm{ }}1{\mathrm{{\text{%}}}}{\mathrm{ }}, 3{\mathrm{{\text{%}}}} $)对平行方向上密度(氘分子、电离态氘分子、氘原子与氘离子)以及对辐射功率的影响 (a), (c)上游等离子体密度抬升至$ {n}_{{\mathrm{e}}, {\mathrm{u}}{\mathrm{p}}}={0.11\times 10}^{20}\;{{\mathrm{m}}}^{-3} $时的剖面; (b), (d) 氖杂质注入通量为$ {6.7\times 10}^{20}\;{\mathrm{p}}{\mathrm{a}}{\mathrm{r}}{\mathrm{t}}{\mathrm{s}}/{\mathrm{s}} $时的剖面, 靶板位于45 m处(由于氘粒子和碳杂质主要分布在靠近靶板的区域, 因此图中只给出了靠近靶板的平行剖面, 即42—45 m)

    Fig. 5.  The effect of carbon concentration (0, 1%, and 3%) on the parallel density and radiation profiles in two detachment regimes: (a), (c) The density and radiation in density ramp induced detachment ($ {n}_{{\mathrm{e}}, {\mathrm{u}}{\mathrm{p}}}={0.11\times 10}^{20}\;{{\mathrm{m}}}^{-3} $); (b), (d) the density and radiation in neon injection induced detachment (neon injection flux equal to $ {6.7\times 10}^{20}\;{\mathrm{p}}{\mathrm{a}}{\mathrm{r}}{\mathrm{t}}{\mathrm{s}}/{\mathrm{s}} $). The parallel profile is 42–45 m (the target located at 45 m).

    图 6  抬升密度和偏滤器氖杂质注入两种脱靶过程中的平行方向上密度(氘分子、电离态氘分子、氘原子与氘离子)以及辐射功率(氘与碳) (a), (c)刮削层上游电子密度在脱靶前$ {n}_{{\mathrm{e}}, {\mathrm{u}}{\mathrm{p}}}={0.08\times 10}^{20}\;{{\mathrm{m}}}^{-3} $、脱靶开始$ {n}_{{\mathrm{e}}, {\mathrm{u}}{\mathrm{p}}}={0.10\times 10}^{20}\;{{\mathrm{m}}}^{-3} $与脱靶后$ {n}_{{\mathrm{e}}, {\mathrm{u}}{\mathrm{p}}}=0.145\times $$ 10^{20}\;{{\mathrm{m}}}^{-3} $时的剖面; (b), (d)氖杂质注入前, 以及杂质注入通量为$ {3.0\times 10}^{20}\;{\mathrm{p}}{\mathrm{a}}{\mathrm{r}}{\mathrm{t}}{\mathrm{s}}/{\mathrm{s}} $, $ {12.5\times 10}^{20}\;{\mathrm{p}}{\mathrm{a}}{\mathrm{r}}{\mathrm{t}}{\mathrm{s}}/{\mathrm{s}} $时的剖面, 图中碳杂质含量都为3%, 靶板位于45 m处 (由于氘粒子和碳杂质主要分布在靠近靶板的区域, 图中只给出了靠近靶板的剖面, 即42—45 m)

    Fig. 6.  Comparison of the parallel density and radiation profiles in two detachment regimes: (a), (c) The density and radiation in density ramp induced detachment ($ {n}_{{\mathrm{e}}, {\mathrm{u}}{\mathrm{p}}}={0.08\times 10}^{20}\;{{\mathrm{m}}}^{-3} $, $ {0.10\times 10}^{20}\;{{\mathrm{m}}}^{-3}, $ and $ {0.145\times 10}^{20}\;{{\mathrm{m}}}^{-3} $); (b), (d) the density and radiation in neon injection induced detachment (neon injection flux equal to $ \text{0 parts/s} $, $ {3.0\times 10}^{20}\;{\mathrm{p}}{\mathrm{a}}{\mathrm{r}}{\mathrm{t}}{\mathrm{s}}/{\mathrm{s}}, $ and $ {12.5\times 10}^{20}\;{\mathrm{p}}{\mathrm{a}}{\mathrm{r}}{\mathrm{t}}{\mathrm{s}}/{\mathrm{s}} $), carbon concentration equal to 3%; the parallel profile is 42–45 m (the target located at 45 m).

    图 8  (a)上游密度抬升与(b)偏滤器注氖气两种脱靶过程中, 氘原子、氘分子、电离态氘分子与等离子体相互作用造成的等离子体动量损失与上游等离子体动量的比值, 即等离子体动量损失因子; (c)上游密度抬升与(d)偏滤器注氖气两种脱靶中, 氘粒子、碳杂质与氖杂质辐射造成的等离子体能量损失与上游等离子体能量的比值, 即等离子体能量损失因子, 碳含量为3%

    Fig. 8.  Momentum loss factor caused by different types of collisional reactions during (a) density ramp induced detachment and (b) neon injection induced detachment; heat loss factor caused by radiations of different particle species during (c) density ramp induced detachment and (d) neon injection induced detachment (carbon concentration equal to 3%).

    图 7  平行方向上从刮削层(0—24 m), 通过X点(24 m)氘靶板(45 m)的氖杂质密度和辐射功率(氖杂质注入通量为$ {3.0\times 10}^{20}\;{\mathrm{p}}{\mathrm{a}}{\mathrm{r}}{\mathrm{t}}{\mathrm{s}}/{\mathrm{s}} $, 上游电子密度$ {n}_{{\mathrm{e}}, {\mathrm{u}}{\mathrm{p}}}=0.08\times 10^{20}\;{{\mathrm{m}}}^{-3} $, 碳杂质含量为3%)

    Fig. 7.  Neon density and radiation profile along the parallel direction from SOL to the target (neon injection flux equal to $ {3.0\times 10}^{20}\;{\mathrm{p}}{\mathrm{a}}{\mathrm{r}}{\mathrm{t}}{\mathrm{s}}/{\mathrm{s}} $, $ {n}_{{\mathrm{e}}, {\mathrm{u}}{\mathrm{p}}}={0.08\times 10}^{20}\;{{\mathrm{m}}}^{-3} $, carbon concentration equal to 3%).

    表 1  氘原子、氘分子的碰撞反应

    Table 1.  Collisional reactions of D and D2.

    反应名称
    $ {\mathrm{e}}+{\mathrm{D}}\to 2{\mathrm{e}}+{{\mathrm{D}}}^{+} $电离
    $ {{\mathrm{D}}}^{+}+{\mathrm{D}}\to {\mathrm{D}}+{{\mathrm{D}}}^{+} $电荷交换
    $ {{\mathrm{D}}}^{+}+{\mathrm{e}}\to {\mathrm{D}} $复合
    $ {\mathrm{e}}+{{\mathrm{D}}}_{2}\to 2{\mathrm{e}}+{{\mathrm{D}}}_{2}^{+} $分子电离
    $ {\mathrm{e}}+{{\mathrm{D}}}_{2}\to {\mathrm{e}}+{\mathrm{D}}+{\mathrm{D}} $分解
    $ {{\mathrm{D}}}^{+}+{{\mathrm{D}}}_{2}\to {{\mathrm{D}}}_{2}^{+}+{\mathrm{D}} $分子电荷交换
    $ {\mathrm{e}}+{{\mathrm{D}}}_{2}^{+}\to {\mathrm{e}}+{{\mathrm{D}}}^{+} $+ $ {\mathrm{D}} $分解激发
    $ {\mathrm{e}}+{{\mathrm{D}}}_{2}^{+}\to 2{\mathrm{e}}+{{\mathrm{D}}}^{+} $+ $ {{\mathrm{D}}}^{+} $分解电离
    $ {\mathrm{e}}+{{\mathrm{D}}}_{2}^{+}\to $ $ {\mathrm{D}}+{\mathrm{D}} $分解复合
    下载: 导出CSV

    表 2  氖杂质的碰撞反应

    Table 2.  Collisional reaction of neon impurities.

    反应 名称
    $ {{\mathrm{N}}{\mathrm{e}}}^{{{Z}}+}+{\mathrm{e}}\to {{\mathrm{N}}{\mathrm{e}}}^{Z+1}+2{\mathrm{e}} $ 电离 ($ Z $ = 0—9)
    $ {{\mathrm{N}}{\mathrm{e}}}^{{{Z}}+}+{\mathrm{e}}\to {{\mathrm{N}}{\mathrm{e}}}^{Z-1} $ 复合 ($ Z $ = 1—10)
    $ {{\mathrm{N}}{\mathrm{e}}}^{{{Z}}+}+{\mathrm{D}}\to {{\mathrm{N}}{\mathrm{e}}}^{Z-1}+{{\mathrm{D}}}^{+} $ 电荷交换 ($ Z $ = 1—10)
    下载: 导出CSV

    表 3  SD1D主要输入参数

    Table 3.  The input parameters of SD1D.

    $ {n}_{\rm e,up}/({10}^{20}~{\rm m}^{-3})$ 氖气注入通量/(1020 part·s–1) Qheat,up/(MW·m–2) 总连接长度/m X点到靶板连接长度/m
    密度抬升脱靶 0.08—0.22 7.2 45 21
    氖杂质注入脱靶 0.8 0—15.0 7.2 45 21
    下载: 导出CSV
    Baidu
  • [1]

    Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (CRC Press

    [2]

    Kallenbach A, Bernert M, Dux R, Reimold F, Wischmeier M, ASDEX Upgrade Team 2016 Plasma Phys. Contr. Fusion 58 045013Google Scholar

    [3]

    Stangeby P C 2018 Plasma Phys. Contr. Fusion 60 044022Google Scholar

    [4]

    Verhaegh K, Lipschultz B, Bowman C, Duval B P, Fantz U, Fil A, Harrison J R, Moulton D, Myatra O, Wünderlich D, Federici F 2021 Plasma Phys. Contr. Fusion 63 035018Google Scholar

    [5]

    Kunze H J 2009 Springer Science & Business Media 56 34

    [6]

    Bernert M, Wischmeier M, Huber A, Reimold F, Lipschultz B, Lowry C, Brezinsek S, Dux R, Eich T, Kallenbach A, Lebschy A 2017 Nucl. Mater. Energy 12 111Google Scholar

    [7]

    Wu T, Nie L, Yu Y, Gao J M, Li J Y, Ma H C, Wen J, Ke R, Wu N, Huang Z H, Liu L, Zheng D L, Yi K Y, Gao X Y, Wang W C, Cheng J, Yan L W, Cai L Z, Wang Z H, Xu M 2023 Plasma Sci. Tech. 25 015102Google Scholar

    [8]

    Zhou Y, Dudson B, Militello F, Verhaegh K, Myatra O 2022 Plasma Phys. Contr. Fusion 64 065006.Google Scholar

    [9]

    Boedo J, Gray D, Chousal L, Conn R, Hiller B, Finken K. H 1998 Rev. Sci. Instrum. 69 2663Google Scholar

    [10]

    Boedo J A, Crocker N, Chousal L, Hernandez R, Chalfant J, Kugel H, Roney P, Wertenbaker J, NSTX Team 2009 Rev. Sci. Instrum. 80 123506Google Scholar

    [11]

    Clark J G, Bowden M D, Scannell R 2021 Rev. Sci. Instrum. 92 043545Google Scholar

    [12]

    Makarov S O, Coster D P, Kaveeva E G, Rozhansky V A, Senichenkov I Y, Veselova I Y, Voskoboynikov S P, Stepanenko A A, Bonnin X, Pitts R A 2023 Nucl. Fusion 63 026014.Google Scholar

    [13]

    Mailloux J, Abid N, Abraham K, Abreu P, Adabonyan O, Adrich P, Afanasev V, Afzal M, Ahlgren T, Aho-Mantila L, Aiba N 2022 Nucl. Fusion 62 042026Google Scholar

    [14]

    Fil A, Lipschultz B, Moulton D, Thornton A, Dudson B D, Myatra O, Verhaegh K, EUROfusion MST1 Team 2022 Nucl. Fusion 62 096026Google Scholar

    [15]

    Myatra O, Moulton D, Dudson B, Lipschultz B, Newton S, Verhaegh K, Fil A 2023 Nucl. Fusion 63 076030Google Scholar

    [16]

    Verhaegh K, Lipschultz B, Duval B P, Harrison J R, Reimerdes H, Theiler C, Labit B, Maurizio R, Marini C, Nespoli F, Sheikh U 2017 Nucl. Mater. Energy 12 1112.Google Scholar

    [17]

    Gao J M, Cai L Z, Cao C Z, Ma H C, Ke R, Wu N, Hu Y, Gao X Y, Cui C H, Huang Z H, Nie L 2023 Nucl. Fusion 63 036006Google Scholar

    [18]

    龙婷, 柯锐, 吴婷, 高金明, 才来中, 王占辉, 许敏 2024 . 73 088901Google Scholar

    Long T, Ke R, Wu T, Gao J M, Cai L Z, Wang Z H, Xu M, 2024 Acta Phys. Sin. 73 088901Google Scholar

    [19]

    Wu N, Cheng J, Yi K Y, Wang R, Han M K, Huang Z H, Wang W C, He Y, Yan L W, Du H L, Gao J M 2024 Nucl. Fusion 64 096007Google Scholar

    [20]

    Liu J B, Wang L, Guo H Y, Wang H Q, Xu G S, Ding F, Xu J C, Liu X J, Yuan Q P, Wu K, Liu S C 2019 Nucl. Fusion 59 126046Google Scholar

    [21]

    Dudson B. D, Allen J, Body T, Chapman B, Lau C, Townley L, Moulton D, Harrison J, Lipschultz B 2019 Plasma Phys. Contr. Fusion 61 065008Google Scholar

    [22]

    Kallenbach A, Bernert M, Dux R, Eich T, Henderson S S, Pütterich T, Reimold F, Rohde V, Sun H J, ASDEX Upgrade Team 2019 Nucl. Mater. Energy 18 166Google Scholar

    [23]

    Zhou Y, Dudson B, Wu T, Wang Z, Xia T, Zhong C, Gao J, Du H, Fan D 2024 Plasma Phys. Contr. Fusion 66 055005Google Scholar

  • [1] 龙婷, 柯锐, 吴婷, 高金明, 才来中, 王占辉, 许敏. HL-2A托卡马克偏滤器脱靶时边缘极向旋转和湍流动量输运.  , 2024, 73(8): 088901. doi: 10.7498/aps.73.20231749
    [2] 沈勇, 董家齐, 何宏达, 丁玄同, 石中兵, 季小全, 李佳, 韩明昆, 吴娜, 蒋敏, 王硕, 李继全, 许敏, 段旭如. 中国环流器2号A托卡马克弹丸注入放电中空电流与反磁剪切位形.  , 2021, 70(18): 185201. doi: 10.7498/aps.70.20210641
    [3] 胡志良, 杨卫涛, 李永宏, 李洋, 贺朝会, 王松林, 周斌, 于全芝, 何欢, 谢飞, 白雨蓉, 梁天骄. 应用中国散裂中子源9号束线端研究65 nm微控制器大气中子单粒子效应.  , 2019, 68(23): 238502. doi: 10.7498/aps.68.20191196
    [4] 陈俊俊, 段济正, 张学智, 姜欣, 段文山. 杂质对Nb2GeC性质影响的第一性原理研究.  , 2015, 64(23): 238101. doi: 10.7498/aps.64.238101
    [5] 孙振月, 桑超峰, 胡万鹏, 王德真. 偏滤器等离子体中杂质对钨壁材料的侵蚀模拟研究.  , 2014, 63(14): 145204. doi: 10.7498/aps.63.145204
    [6] 陈丽群, 于涛, 彭小芳, 刘健. 难熔元素钨在NiAl位错体系中的占位及对键合性质的影响.  , 2013, 62(11): 117101. doi: 10.7498/aps.62.117101
    [7] 花金荣, 李莉, 向霞, 祖小涛. 熔石英亚表面杂质颗粒附近光场调制的三维模拟.  , 2011, 60(4): 044206. doi: 10.7498/aps.60.044206
    [8] 李玉琼, 陈建华, 郭进. 天然杂质对黄铁矿的电子结构及催化活性的影响.  , 2011, 60(9): 097801. doi: 10.7498/aps.60.097801
    [9] 秦猛. 多量子位Heisenberg XX链中的杂质纠缠.  , 2010, 59(4): 2212-2216. doi: 10.7498/aps.59.2212
    [10] 吴洪. 杂质对量子环上荷负电激子的影响.  , 2010, 59(12): 8843-8849. doi: 10.7498/aps.59.8843
    [11] 梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊. 掺氮金刚石的光学吸收与氮杂质含量的分析研究.  , 2009, 58(11): 8039-8043. doi: 10.7498/aps.58.8039
    [12] 姚良骅, 冯北滨, 陈程远, 冯 震, 李 伟, 焦一鸣. 中国环流器二号A(HL-2A)超声分子束注入最新结果.  , 2008, 57(7): 4159-4165. doi: 10.7498/aps.57.4159
    [13] 秦 猛, 田东平, 陶应娟. 自旋为1的三粒子Heisenberg XXX链中杂质对热纠缠的影响.  , 2008, 57(9): 5395-5399. doi: 10.7498/aps.57.5395
    [14] 袁剑辉, 程玉民. 单壁碳纳米管杨氏模量的掺杂效应.  , 2007, 56(8): 4810-4816. doi: 10.7498/aps.56.4810
    [15] 惠小强, 陈文学, 刘 起, 岳瑞宏. 量子位Heisenberg XX开链中边界量子位之间的纠缠.  , 2006, 55(6): 3026-3031. doi: 10.7498/aps.55.3026
    [16] 高国良, 钱昌吉, 李 洪, 谷温静, 黄晓虹, 叶高翔. 无格点基底表面的杂质分布对分枝状凝聚体的影响.  , 2006, 55(7): 3349-3354. doi: 10.7498/aps.55.3349
    [17] 袁先漳, 裴慧元, 陆卫, 李宁, 史国良, 方家熊, 沈学础. Zn0.04Cd0.96Te中深能级的红外光电导谱研究.  , 2001, 50(4): 775-778. doi: 10.7498/aps.50.775
    [18] 李超荣, 吴立军, 陈万春. 高分辨X射线衍射研究杂质对晶体结构完整性的影响.  , 2001, 50(11): 2185-2191. doi: 10.7498/aps.50.2185
    [19] 张国英, 刘贵立, 曾梅光, 钱存富. 钢中小角度晶界区的电子结构及掺杂效应.  , 2000, 49(7): 1344-1347. doi: 10.7498/aps.49.1344
    [20] 曹天德, 陈 敏, 王 庆. 杂质引起的非费密液体行为.  , 2000, 49(11): 2261-2263. doi: 10.7498/aps.49.2261
计量
  • 文章访问数:  357
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-16
  • 修回日期:  2025-03-05
  • 上网日期:  2025-04-01
  • 刊出日期:  2025-06-05

/

返回文章
返回
Baidu
map