-
斑图放电是介质阻挡放电的重要模式之一,在众多领域具有广泛的应用前景。本工作在氩气/空气混合气体介质阻挡放电系统中,采用正六边形和方形组成的双气隙边界,通过改变实验参数,获得了多个全新的复杂斑图。利用光学与电学手段研究了其放电特性及其时间相关性。结果表明放电斑图在每半个电压周期内均有多次放电并在时间上具有相关性。利用增强型电荷耦合设备拍摄了方形点阵斑图时间分辨的放电图像,发现半个电压周期内的多次放电其实是斑图在径向上从外向内逐渐点亮的过程,理论分析了该斑图的形成机理。采集了方形点阵斑图的发射光谱,通过线比法和玻尔兹曼拟合法探究了方形点阵斑图的电子密度、电子温度、分子振动温度、分子转动温度的变化。结果显示电子密度沿着径向方向从外到内逐渐减小,电子温度与分子振动温度沿着径向方向从外到内逐渐增加,分子转动温度几乎不变。Pattern discharge is a common mode in dielectric barrier discharge (DBD) and has broad application prospects in various industrial fields, such as material surface treatment, environmental monitoring, and biomedical applications. In this work, a mixed gas of 75% argon and 25% air was used to generate pattern discharge. A double-gap boundary composed of hexagonal and square configurations was employed, and the gas pressure was fixed at 20 kPa. By varying the applied voltage amplitude, single-ring pattern, square-point-line pattern, square lattice pattern, and annular-lattice pattern were obtained for the first time. The discharge characteristics and their temporal correlation were studied using both optical and electrical methods. The results show that the discharge patterns exhibit multiple discharges within each half of the voltage cycle, and these discharges are temporally correlated. Time-resolved discharge images of the square lattice pattern were captured using an enhanced charge-coupled device (ICCD). Experimental results reveal that multiple discharges within a half-voltage cycle correspond to the ignition process of the pattern in the radial direction from the outside to the inside. The morphology of the square lattice pattern observed by the naked eye is actually the result of the temporal superposition of luminescence from points at different positions during the evolution process. The formation mechanism of this pattern was analyzed through electric field simulations and theoretical calculations. Plasma parameters were diagnosed by collecting the emission spectrum of the square dot-lattice pattern. The results showed that the electron density gradually decreases radially from the outer to the inner region, while the electron temperature and molecular vibrational temperature increase radially from the outer to the inner region, and the molecular rotational temperature remains almost unchanged.
-
[1] Zhang J, Tang W W, Wang Y H, Wang D Z 2023 Plasma Sources Sci. Technol. 32 055005
[2] Li J Y, Zhou D S, Rebrov E, Tang X, Kim M 2024 J. Phys. D: Appl. Phys. 57 395201
[3] Fang J L, Zhang Y R, Lu C Z, Gu L L, Xu S F, Guo Y, Shi J J 2024 Chin. Phys. B 33 015201
[4] Guan H L, Chen X R, Jiang T, Du H, Paramane A, Zhou H 2020 Chin. Phys. B 29 075204
[5] Li X C, Liu R J, Li X N, Gao K, Wu J C, Gong D D, Jia P Y 2019 Phys. Plasmas 26 023510
[6] Remy A, Geyter N D, Reniers F 2023 Plasma Process. Polym 20 2200201
[7] Hosseini H 2023 RSC Adv. 13 28211
[8] Li Y W, Yuan H, Zhou X F, Liang J P, Liu Y Y, Chang D L, Yang, D Z 2022 Catalysts 12 203
[9] Song H, Dang Y M, Ki S H, Park S, Ha J H 2024 LWT 207 116637
[10] Domonkos M, Tichá P, Trejbal J, Demo P 2021 Appl. Sci. 11 4809
[11] Massines F, Sarra-Bournet C, Fanelli F, Naudé N, Gherardi N 2012 Plasma Process. Polym 9 1041
[12] Akishev Y, Alekseeva T, Karalnik V, Petryakov A 2022 Plasma Sources Sci. Technol. 31 084001
[13] Tschiersch R, Nemschokmichal S, Bogaczyk M, Meichsner J 2017 J. Phys. D: Appl. Phys. 50 415206
[14] Liu K, Fang Z, Dai D 2023 Acta Phys. Sin. 72 135201(刘凯,方泽,戴栋 2023 72 135201)
[15] Ran J X, Zhang X X, Zhang Y, Wu K Y, Zhao N, He X R, Dai X H, Liang Q H, Li X C 2023 Plasma Sci. Technol. 25 055403
[16] Lu X P, Fang Z, Dai D, Shao T, Liu F, Zhang C, Liu D W, Nie L L, Jiang C Q 2023 High Voltage 8 1132
[17] Brandenburg R 2018 Plasma Sources Sci. Technol. 26 053001
[18] Wang Y Y, Yan H J, Li T, Bai X D, Wang X, Song J, Zhang Q Z 2023 AIP Advances 13 085327
[19] Wang H R, Hao Y P, Fang Q, Su H W, Yang L, Li L C 2020 Acta Phys. Sin. 69 145203 (万海容,郝艳捧,房强,苏恒炜,阳林,李立浧 2020 69 145203)
[20] Wu K Y, Wu J C, Jia B Y, Ren C H, Kang P C, Jia P Y, Li X C 2020 Phys. Plasmas 27 082308
[21] Ouyang J T, Li B, He F, Dai D 2018 Plasma Sci. Technol 20 103002
[22] Hao Y P, Han Y Y, Huang Z M, Yang L, Dai D, Li L C 2018 Phys. Plasmas 25 013516
[23] Li X C, Liu R, Jia P Y, Wu K Y, Ren C H, Yin Z Q 2018 Phys. Plasmas 25 013512
[24] Li Z Y, Jin S H, Xian Y B, Nie L L, Liu D W, Lu X P 2021 Plasma Sources Sci. Technol. 30 065026
[25] Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. Technol. 28 075003
[26] Zhang J H, Pan Y Y, Feng J Y, He Y N, Chu J H, Dong L F 2023 Plasma Sci. Technol. 25 025406
[27] Duan X X, Ouyang J T, Zhao X F, He F 2009 Phys. Rev. E 80 016202
[28] Wang X, Yan H J, Wang Y Y, Yu S Q, Li T, Song J 2023 J. Phys. D: Appl. Phys. 56 105201
[29] Mokrov M S, Raizer Y P 2018 Plasma Sources Sci. Technol 27 065008
[30] Hao F, Dong L F, Du T, Liu Y, Fan W L, Pan Y Y 2018 Phys. Plasmas 25 033510
[31] Han R, Dong L F, Huang J Y, Sun H Y, Liu B B, Mi Y L 2019 Chin. Phys. B 28 075204
[32] Sun H Y, Dong L F, Liu F C, Mi Y L, Han R, Huang J Y, Liu B B, Hao F, Pan Y Y 2018 Phys. Plasmas 25 113507
[33] Wei L Y, Dong L F, Fan W L, Liu F C, Feng J Y, Pan Y Y 2018 Sci Rep 8 3835
[34] Feng J Y, Dong L F, Wei L Y, Fan W L, Li C X, Pan Y Y 2016 Phys. Plasmas 23 093502
[35] Pan Y Y, Li Y H, Dou Y Y, Fu G S, Dong L F 2022 Phys. Plasmas 29 053502
[36] Liu F C, Liu Y N, Liu Q, Wu Z C, Liu Y H, Gao K Y, He Y F, Fan W L, Dong L F 2022 Plasma Sources Sci. Technol 31 025015
[37] Li C X, Dong L F, Feng J Y, Huang Y P 2019 Phys. Plasmas 26 023505
[38] Pan Y Y, Feng J Y, Li C X, Dong L F 2022 Plasma Sci. Technol. 24 115401
[39] Li Y H, Pan Y Y, Tian M, Wang Y, He Y N, Zhang J H, Chu J H, Dong L F 2023 Phys. Plasmas 30 033502
[40] Liu S H, Neiger M 2003 J. Phys. D:Appl. Phys. 36 3144
[41] Bruggeman P J, Sadeghi N, Schram D C, Linss V 2014 Plasma Sources Sci. Technol. 23 023001
[42] Yang F X, Mu Z X, Zhang J L 2016 Plasma Sci. Technol. 18 79
[43] Zhu X M, Pu Y K 2008 Plasma Sources Sci. Technol. 17 024002
计量
- 文章访问数: 75
- PDF下载量: 3
- 被引次数: 0