搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近红外波长处金星(盘)线偏振度的敏感性分析

李宜奇 孙晓兵 郑小兵 黄红莲 刘晓 提汝芳 韦祎晨 王宇轩

引用本文:
Citation:

近红外波长处金星(盘)线偏振度的敏感性分析

李宜奇, 孙晓兵, 郑小兵, 黄红莲, 刘晓, 提汝芳, 韦祎晨, 王宇轩
cstr: 32037.14.aps.74.20250015

Sensitivity analysis of Venus (disk) linear polarization at near-infrared wavelengths

LI Yiqi, SUN Xiaobing, ZHENG Xiaobing, HUANG Honglian, LIU Xiao, TI Rufang, WEI Yichen, WANG Yuxuan
cstr: 32037.14.aps.74.20250015
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 通过对金星大气中云和霾进行详细的分层建模和辐射传输模拟, 并结合金星快车SPICAV IR仪器的近红外观测数据, 探讨了云和霾粒子的微物理性质及其对金星(盘)线偏振度的影响. 结果表明, 不同模式粒子的单次散射和线偏振特性在相位角和波长上呈现显著变化, 上层霾和云粒子(Mode 1和Mode 2)的微物理性质对金星的线偏振度影响尤为显著. Mode 1粒子的柱密度减小或模态半径增大均会使线偏振峰值增大, 而线偏振度对Mode 2粒子柱密度的变化与Mode 1趋势相反. 复折射率实部的变化对偏振特性影响显著, 而虚部影响较小. 此外, 线偏振度在金星盘上随波长、相位角及位置(中心与边缘)变化明显, 盘积分的线偏振特性对粒子微物理性质和大气水平不均匀性(如云量分布)高度敏感, 且光环现象清晰可见. 多层模型的模拟结果与SPICAV IR中低纬数据拟合较好, 这种详细分层建模为揭示金星大气中云和霾的微物理特性及其辐射传输特性提供了重要依据.
    The PyMieDAP radiative transfer model is used in this work to simulate the radiation characteristics of Venus clouds and haze, thereby investigating how their microphysical characteristics affect linear polarization by comparing near-infrared polarization data from the SPICAV IR instrument on the Venus Express. The results show that single-scattered fluxes of the four particle modes decrease in a phase angle range from 0° to 120°, but increase near 160°. Mode 1 particles (upper haze) exhibit Rayleigh scattering characteristics, with polarization changing from positive to negative as the wavelength increases. Mode 2 and Mode 2' particles display two positive polarization peaks near 15° and 160°, respectively, with polarization reversing in the near-infrared. Mode 3 particles show oscillations in polarization near 105°, flipping from positive to negative between 155° and 165°. The primary polarization peak occurs near 15°, corresponding to the main rainbow, while a secondary peak between 150° and 160° is attributed to anomalous diffraction.The microphysical properties of upper clouds and haze (Mode 1 and Mode 2) significantly affect the linear polarization of Venus, while those of lower clouds (Mode 2' and Mode 3) have a minimum influence. A reduction in Mode 1 column density increases the polarization peak at the main rainbow, while an increase in Mode 2 column density has the opposite effect. Changes in modal radius enhance polarization peaks for Mode 1 and Mode 2, while increasing geometric standard deviation reduces polarization peaks and shifts their phase angles. The real part of the complex refractive index has a greater influence on polarization than the imaginary part. Simulations using the multilayer model show better agreement with SPICAV IR data and consistency with the larger particle sizes in Venus’ haze. The integrated linear polarization across the Venus disk varies with wavelength and phase angle, with the polarization being higher at the disk's edge. The variation in cloud coverage also influences polarization, with areas with fewer clouds exhibiting higher values. In the future, further research will be conducted on the influence of cloud and haze parameters on line polarization, for the inversion of these parameters is beyond the scope of this work.
      通信作者: 孙晓兵, xbsun@aiofm.ac.cn
    • 基金项目: 航天科技创新应用研究项目(批准号: E23Y0H555S1)和航空科技创新应用研究项目(批准号: 62502510201)资助的课题.
      Corresponding author: SUN Xiaobing, xbsun@aiofm.ac.cn
    • Funds: Project supported by the Aerospace Science and Technology Innovation Application Research Project, China (Grant No. E23Y0H555S1) and the Aviation Science and Technology Innovation Application Research Project, China (Grant No. 62502510201).
    [1]

    Lyot B 1929 Ph. D. Dissertation (Paris: Université de Paris Paris

    [2]

    Coffeen D L 1969 Astronom. J. 74 446Google Scholar

    [3]

    Dyck H, Forbes F, Shawl S 1971 Astronom. J. 76 901Google Scholar

    [4]

    Hansen J E, Hovenier J 1974 J. atmos. Sci. 31 1137Google Scholar

    [5]

    Esposito L, Knollenberg R, Marov M, Toon O, Turco R 1983 The Clouds and Hazes of Venus (University of Arizona Press) pp484−564

    [6]

    Pollack J B, Dalton J B, Grinspoon D, Wattson R B, Freedman R, Crisp D, Allen D A, Bezard B, DeBergh C, Giver L P 1993 Icarus 103 1Google Scholar

    [7]

    Rossi L, Marcq E, Montmessin F, Fedorova A, Stam D, Bertaux J L, Korablev O 2015 Planet. Space Sci. 113 159Google Scholar

    [8]

    李宜奇, 孙晓兵, 黄红莲, 刘晓, 提汝芳, 郑小兵, 樊依哲, 余海啸, 韦祎晨, 王宇轩, 王宇瑶 2024 红外与毫米波学报 43 657Google Scholar

    Li Y Q, Sun X B, Huang H L, Liu X, Ti R F, Zheng X B, Fan Y Z, Yu H X, Wei Y C, Wang Y X, Wang Y Y 2024 J. Infrared Millim. W. 43 657Google Scholar

    [9]

    Hansen J E, Travis L D 1974 Space Sci. Rev. 16 527Google Scholar

    [10]

    Stam D 2008 Astron. Astrophys. 482 989Google Scholar

    [11]

    Stam D, Hovenier J, Waters L 2004 Astron. Astrophys. 428 663Google Scholar

    [12]

    Bertaux J L, Nevejans D, Korablev O, et al. 2007 Planet. Space Sci. 55 1673Google Scholar

    [13]

    Svedhem H, Titov D, McCoy D, Lebreton J P, Barabash S, Bertaux J L, Drossart P, Formisano V, Häusler B, Korablev O 2007 Planet. Space Sci. 55 1636Google Scholar

    [14]

    Korablev O, Fedorova A, Bertaux J L, et al. 2012 Planet. Space Sci. 65 38Google Scholar

    [15]

    Rossi L, Berzosa-Molina J, Stam D M 2018 Astron. Astrophys. 616 A147Google Scholar

    [16]

    de Haan J F, Bosma P, Hovenier J 1987 Astron. Astrophys. 183 371

    [17]

    Peterson P 2009 Int. J. Comput. Sci. Eng. 4 296Google Scholar

    [18]

    Zasova L, Moroz V, Linkin V, Khatuntsev I, Maiorov B 2006 Cosmic Res. 44 364Google Scholar

    [19]

    Braak C, De Haan J, Hovenier J, Travis L 2002 J. Geophys. Res. Planets 107 5Google Scholar

    [20]

    Knibbe W J J, de Haan J F, Hovenier J W, Travis L D 1998 J. Geophys. Res. Planets 103 8557Google Scholar

    [21]

    Palmer K F, Williams D 1975 Appl. Opt. 14 208Google Scholar

    [22]

    Haus R, Kappel D, Arnold G 2015 Planet. Space Sci. 117 262Google Scholar

    [23]

    Mie G 1908 Ann. Phys. 330 377Google Scholar

    [24]

    van de Hulst H C Van de Hulst H C, Twersky V 1957 Physics Today 10 28Google Scholar

  • 图 1  PyMieDAP输入及输出参数

    Fig. 1.  PyMieDAP input and output parameters.

    图 2  金星大气47—90 km T-P 廓线

    Fig. 2.  47–90 km T-P profile of Venus atmosphere.

    图 3  SPICAV IR 11个大气窗口波长处对应75% H2SO4溶液的复折射率

    Fig. 3.  SPICAV IR complex refractive index corresponding to 75% H2SO4 solution at 11 atmospheric window wavelengths.

    图 4  四种模式粒子的单层光学厚度$ \tau $随波长和高度的变化

    Fig. 4.  Single-layer optical thickness τ of four modes of particles as a function of wavelength and height.

    图 5  行星盘积分示意图

    Fig. 5.  Schematic diagram of planetary disk integration.

    图 6  四种模式粒子的单次散射通量

    Fig. 6.  Single scattering flux for four modes of particles.

    图 7  四种模式粒子的单次散射线偏振度

    Fig. 7.  Single scattering polarization for four modes of particles.

    图 8  四种模式粒子多次散射的总线偏振度

    Fig. 8.  Total linear polarization degree of multiple scattering of particles in four modes.

    图 9  线偏振度对四种模式粒子柱密度变化的敏感性( $ {V}_{0}^{i} $代表粒子的柱密度(i =1 , 2, 2', 3), 对应4种不同的粒子模式)

    Fig. 9.  Sensitivity of linear polarization degree to changes in particle column density in four modes ($ {V}_{0}^{i} $ represents the column density of the particle, i = 1, 2, 2', 3, corresponding to four different particle modes).

    图 10  线偏振度对4种模式粒子模态半径变化的敏感性($ r_{\text{g}}^i $代表粒子的模态半径(i = 1, 2, 2', 3), 对应4种不同的粒子模式)

    Fig. 10.  Sensitivity of linear polarization degree to changes in modal radius of particles in four modes ($ r_{\text{g}}^i $ represents the modal radius of the particle, i = 1, 2, 2', 3, corresponding to four different particle modes).

    图 11  线偏振度对四种模式粒子几何标准差变化的敏感性($ \sigma _{\text{g}}^i $代表粒子的几何标准差(i = 1, 2, 2', 3), 对应4种不同的粒子模式)

    Fig. 11.  Sensitivity of linear polarization to the change of geometric standard deviation of particles in four modes ($ \sigma _{\text{g}}^i $ represents the geometric standard deviation of particles, i = 1, 2, 2', 3, corresponding to four different particle modes).

    图 12  线偏振度对粒子复折射率和H2SO4浓度变化的敏感性($ {n}_{{\mathrm{r}}} $为折射率实部, $ {n}_{{\mathrm{i}}} $为折射率虚部)

    Fig. 12.  Sensitivity of linear polarization degree to changes in particle complex refractive index and H2SO4 concentration ($ {n}_{{\mathrm{r}}} $ is the real part of the refractive index, $ {n}_{{\mathrm{i}}} $ is the imaginary part of the refractive index).

    图 13  (a) 多层和双层模型的模拟结果与北半球SPICAV IR偏振数据的对比; (b)多层和双层模型模拟值与北半球SPICAV IR实测偏振数据间残差的1σ区间; (c), (d)对应北半球中低纬地区(0—60°N); (e), (f)对应北半球高纬地区(60°N—80°N)

    Fig. 13.  (a) Comparison of simulation results of multi-layer and double-layer models with SPICAV IR polarization data in the Northern Hemisphere; (b) 1σ interval of residuals between simulation values of multi-layer and double-layer models and measured polarization data of SPICAV IR in the Northern Hemisphere; (c), (d) correspond to the middle and low latitudes of the Northern Hemisphere (0−60°N); (e), (f) correspond to the high latitudes of the Northern Hemisphere (60°N−80°N)

    图 14  相位角$ \alpha =0° $时不同波长下线偏振在金星盘上的积分结果

    Fig. 14.  Integration results of linear polarization on the disk of Venus at different wavelengths when the phase angle $ \alpha =0° $.

    图 15  金星盘上的线偏振度随相位角的变化

    Fig. 15.  Variation of linear polarization degree with phase angle on the disk of Venus.

    图 16  相位角$ \alpha =15° $时盘积分线偏振度对Mode 2粒子几何标准差$ \sigma _{\text{g}}^2 $的敏感性

    Fig. 16.  Sensitivity of disk integrated linear polarization degree to Mode 2 particle geometric standard deviation $ \sigma _{\text{g}}^2 $ when phase angle $ \alpha =15° $.

    图 17  相位角$ \alpha =0° $时不同云量下金星盘积分线偏振度

    Fig. 17.  Integrated linear polarization degree of Venus disk under different cloud cover when phase angle $ \alpha =0° $.

    表 1  SPICAV IR仪器SW和LW通道对应波长

    Table 1.  Wavelengths of SW and LW channels of SPICAV IR instrument.

    通道DOTS处波长/nm
    SW650.8, 757.2, 852.7, 982.3
    LW1101.1, 1159.6, 1197.3, 1273.4, 1323.0, 1553.7, 1626.0
    下载: 导出CSV

    表 2  金星标准云模型的单模态参数

    Table 2.  Single-mode parameters of Venus standard cloud model.

    模式 1 2 2' 3
    峰值高度下限 zb/km 49.0 65.0 49.0 49.0
    恒定峰值粒子数的层厚 zc/km 16.0 1.0 11.0 8.0
    上层标高 Hup/km 3.5 3.5 1.0 1.0
    下层标高 Hlo/km 1.0 3.0 0.1 0.5
    峰值高度处的粒子数密度 N0/cm–3 193.5 100 50 14
    粒子总柱浓度/(105 cm–2) 3966.19 749.56 605.0 133.0
    下载: 导出CSV
    Baidu
  • [1]

    Lyot B 1929 Ph. D. Dissertation (Paris: Université de Paris Paris

    [2]

    Coffeen D L 1969 Astronom. J. 74 446Google Scholar

    [3]

    Dyck H, Forbes F, Shawl S 1971 Astronom. J. 76 901Google Scholar

    [4]

    Hansen J E, Hovenier J 1974 J. atmos. Sci. 31 1137Google Scholar

    [5]

    Esposito L, Knollenberg R, Marov M, Toon O, Turco R 1983 The Clouds and Hazes of Venus (University of Arizona Press) pp484−564

    [6]

    Pollack J B, Dalton J B, Grinspoon D, Wattson R B, Freedman R, Crisp D, Allen D A, Bezard B, DeBergh C, Giver L P 1993 Icarus 103 1Google Scholar

    [7]

    Rossi L, Marcq E, Montmessin F, Fedorova A, Stam D, Bertaux J L, Korablev O 2015 Planet. Space Sci. 113 159Google Scholar

    [8]

    李宜奇, 孙晓兵, 黄红莲, 刘晓, 提汝芳, 郑小兵, 樊依哲, 余海啸, 韦祎晨, 王宇轩, 王宇瑶 2024 红外与毫米波学报 43 657Google Scholar

    Li Y Q, Sun X B, Huang H L, Liu X, Ti R F, Zheng X B, Fan Y Z, Yu H X, Wei Y C, Wang Y X, Wang Y Y 2024 J. Infrared Millim. W. 43 657Google Scholar

    [9]

    Hansen J E, Travis L D 1974 Space Sci. Rev. 16 527Google Scholar

    [10]

    Stam D 2008 Astron. Astrophys. 482 989Google Scholar

    [11]

    Stam D, Hovenier J, Waters L 2004 Astron. Astrophys. 428 663Google Scholar

    [12]

    Bertaux J L, Nevejans D, Korablev O, et al. 2007 Planet. Space Sci. 55 1673Google Scholar

    [13]

    Svedhem H, Titov D, McCoy D, Lebreton J P, Barabash S, Bertaux J L, Drossart P, Formisano V, Häusler B, Korablev O 2007 Planet. Space Sci. 55 1636Google Scholar

    [14]

    Korablev O, Fedorova A, Bertaux J L, et al. 2012 Planet. Space Sci. 65 38Google Scholar

    [15]

    Rossi L, Berzosa-Molina J, Stam D M 2018 Astron. Astrophys. 616 A147Google Scholar

    [16]

    de Haan J F, Bosma P, Hovenier J 1987 Astron. Astrophys. 183 371

    [17]

    Peterson P 2009 Int. J. Comput. Sci. Eng. 4 296Google Scholar

    [18]

    Zasova L, Moroz V, Linkin V, Khatuntsev I, Maiorov B 2006 Cosmic Res. 44 364Google Scholar

    [19]

    Braak C, De Haan J, Hovenier J, Travis L 2002 J. Geophys. Res. Planets 107 5Google Scholar

    [20]

    Knibbe W J J, de Haan J F, Hovenier J W, Travis L D 1998 J. Geophys. Res. Planets 103 8557Google Scholar

    [21]

    Palmer K F, Williams D 1975 Appl. Opt. 14 208Google Scholar

    [22]

    Haus R, Kappel D, Arnold G 2015 Planet. Space Sci. 117 262Google Scholar

    [23]

    Mie G 1908 Ann. Phys. 330 377Google Scholar

    [24]

    van de Hulst H C Van de Hulst H C, Twersky V 1957 Physics Today 10 28Google Scholar

  • [1] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面.  , 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [2] 李春曦, 程冉, 叶学民. 接触角迟滞和气-液界面张力温度敏感性对液滴蒸发动态特性的影响.  , 2021, 70(20): 204701. doi: 10.7498/aps.70.20210294
    [3] 吴晓庆, 田启国, 金鑫淼, 姜鹏, 青春, 蔡俊, 周宏岩. 常规气象参数估算南极泰山站近地面大气光学湍流强度.  , 2017, 66(3): 039201. doi: 10.7498/aps.66.039201
    [4] 罗尹虹, 张凤祁, 王燕萍, 王圆明, 郭晓强, 郭红霞. 纳米静态随机存储器低能质子单粒子翻转敏感性研究.  , 2016, 65(6): 068501. doi: 10.7498/aps.65.068501
    [5] 李书磊, 刘磊, 高太长, 黄威, 胡帅. 太赫兹波被动遥感卷云微物理参数的敏感性试验分析.  , 2016, 65(13): 134102. doi: 10.7498/aps.65.134102
    [6] 左冬冬, 侯威, 王文祥. 中国西南地区干旱Copula函数模型对样本量的敏感性分析.  , 2015, 64(10): 100203. doi: 10.7498/aps.64.100203
    [7] 李红祺. 随机平衡设计傅里叶振幅敏感性分析方法和拓展傅里叶振幅敏感性分析方法在陆面过程模式敏感性分析中的应用探索.  , 2015, 64(6): 069201. doi: 10.7498/aps.64.069201
    [8] 肖尧, 郭红霞, 张凤祁, 赵雯, 王燕萍, 丁李利, 范雪, 罗尹虹, 张科营. 累积剂量影响静态随机存储器单粒子效应敏感性研究.  , 2014, 63(1): 018501. doi: 10.7498/aps.63.018501
    [9] 李传新, 司福祺, 周海金, 刘文清, 胡仁志, 刘凤垒. 基于普通汞灯光源的横向塞曼效应背景校正大气汞检测方法研究.  , 2014, 63(7): 074202. doi: 10.7498/aps.63.074202
    [10] 刁利杰, 张小飞, 陈帝伊. 分数阶并联RLαCβ电路.  , 2014, 63(3): 038401. doi: 10.7498/aps.63.038401
    [11] 刘西川, 高太长, 刘磊, 翟东力. 基于粒子成像测速技术的降雪微物理特性研究.  , 2014, 63(19): 199201. doi: 10.7498/aps.63.199201
    [12] 刘西川, 高太长, 刘磊, 翟东力. 基于粒子成像测速技术的雨滴微物理特性研究.  , 2014, 63(2): 029203. doi: 10.7498/aps.63.029203
    [13] 王建栋, 郭维栋, 李红祺. 拓展傅里叶幅度敏感性检验(EFAST)在陆面过程模式中参数敏感性分析的应用探索.  , 2013, 62(5): 050202. doi: 10.7498/aps.62.050202
    [14] 周国泉. 线偏振拉盖尔-高斯光束的远场发散特性.  , 2012, 61(2): 024208. doi: 10.7498/aps.61.024208
    [15] 邱明, 张振华, 邓小清. 碳链输运对基团吸附的敏感性分析.  , 2010, 59(6): 4162-4169. doi: 10.7498/aps.59.4162
    [16] 漆云凤, 刘驰, 周军, 陈卫标, 董景星, 魏运荣, 楼祺洪. 128 W单频线偏振光纤放大器特性研究.  , 2010, 59(6): 3942-3947. doi: 10.7498/aps.59.3942
    [17] 李桂琴, 蔡军. graphene量子点的起伏效应对尺寸的敏感性研究.  , 2009, 58(9): 6453-6458. doi: 10.7498/aps.58.6453
    [18] 李建龙, 吕百达. 线偏振高斯光束通过复合型衍射光栅的传输特性.  , 2008, 57(3): 1656-1661. doi: 10.7498/aps.57.1656
    [19] 张光寅, 王宝明. 晶体剩余反射带短波边弱振动反射光谱结构的异常敏感性.  , 1984, 33(9): 1306-1313. doi: 10.7498/aps.33.1306
    [20] 雷啸霖. Tc级数的收敛半径对声子谱高频行为的敏感性.  , 1981, 30(8): 1127-1131. doi: 10.7498/aps.30.1127
计量
  • 文章访问数:  375
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-04
  • 修回日期:  2025-02-11
  • 上网日期:  2025-03-13

/

返回文章
返回
Baidu
map