搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二价乙烷分子离子三体碎裂的解离机制研究

张紫琪 闫顺成 陶琛玉 余璇 张少锋 马新文

引用本文:
Citation:

二价乙烷分子离子三体碎裂的解离机制研究

张紫琪, 闫顺成, 陶琛玉, 余璇, 张少锋, 马新文
cstr: 32037.14.aps.74.20250008

Dissociation mechanism of ethane dication via three-body fragmentation

ZHANG Ziqi, YAN Shuncheng, TAO Chenyu, YU Xuan, ZHANG Shaofeng, MA Xinwen
cstr: 32037.14.aps.74.20250008
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 分子离子广泛存在于行星大气的电离层中, 其碎裂可以产生多个离子和中性碎片. 研究末态产物的动能分布和生成机理, 可以促进理解行星大气的逃逸等天文现象. 本文开展了电子碰撞乙烷的双电离碎裂实验, 重点研究了$ {{\text{C}}_2}{\text{H}}_6^{2 + } $离子C—C键断裂后形成$ {\text{CH}}_3^ + /{\text{CH}}_2^ + /{\text{H}} $ 的三体解离通道. 直接测量了$ {\text{CH}}_3^ + $和$ {\text{CH}}_2^ + $离子的三维动量, 然后利用动量守恒重构了H的动量. 通过动能释放谱、Dalitz图、牛顿图分析了三体碎裂的解离机制. 发现协同解离是产生该通道的主要机制, 另有部分次序解离的贡献, 其第一步是$ {{\text{C}}_2}{\text{H}}_6^{2 + } $解离生成H和亚稳态$ {{\text{C}}_2}{\text{H}}_5^{2 + } $, 第二步是$ {{\text{C}}_2}{\text{H}}_5^{2 + } $碎裂生成$ {\text{CH}}_3^ + $和$ {\text{CH}}_2^ + $. 实验发现H原子动能分布较广, 最高能量甚至达到10 eV, 远高于土卫六大气的逃逸能量, 因而该解离路径对H逃逸过程有贡献.
    Molecular ions are widely distributed in the ionosphere of planetary atmospheres, and their fragmentations can generate different ions and neutral fragments. Studying the kinetic energy distribution and generation mechanism of the final products is helpful in understanding fundamental phenomena in astrophysics and plasma physics. In particular, ethane is an important molecule found in Titan and comet, and its fragmentation may be involved in the generation of complex hydrocarbons, as well as the atmospheric escape processes on Titan.In this paper, the experiment on ethane fragmentation by electron impact is carried out, focusing on the three-body fragmentation channel from $ {{\text{C}}_2}{\text{H}}_6^{2 + } $ to $ {\text{CH}}_3^ + /{\text{CH}}_2^ + /{\text{H}} $. The three-dimensional momenta of $ {\text{CH}}_3^ + $ and $ {\text{CH}}_2^ + $ ions are measured, and then the momentum of the H atom is reconstructed using momentum conservation law. Based on these analyses, the kinetic energy release (KER) spectrum and the fragmentation mechanisms are investigated.The time-of-flight (TOF) coincidence map of the ions shows two channels: channel (1) that represents the two-body dissociation generating $ {\text{CH}}_3^ + $/$ {\text{CH}}_3^ + $, and channel (2) that refers to the three-body dissociation generating $ {\text{CH}}_3^ + /{\text{CH}}_2^ + /{\text{H}} $. It is found that the neutral H from channel (2) has a wide kinetic energy distribution, ranging from 0 eV to more than 10 eV. This feature indicates that the dissociation of the C-H bond is from multiple electronic states. Since the escape threshold of H in Titan’s ionosphere is 0.02 eV, the vast majority of the H atoms produced in channel (2) can escape into outer space. In addition, the kinetic energy sum of $ {\text{CH}}_3^ + $ and $ {\text{CH}}_2^ + $ in channel (2) is found to be similar to the KER of channel (1), indicating that the C-H dissociation presents limited influence on the energy sum of the CH2+ and $ {\text{CH}}_3^ + $.The corresponding fragmentation mechanism of channel (2) is also analyzed in this work. the overall KER spectrum is divided into three parts: 0–6 eV, 6–9 eV, and 9–11 eV, and the respective Dalitz plots and Newton diagrams are reconstructed under different KER conditions. In all Dalitz plots, there are a bright spot representing the concerted dissociation and a horizontal belt representing the sequential dissociation. The concerted dissociation is considered as the main mechanism, while the sequential dissociation plays a secondary role.The bright spot in the Dalitz plot shifts from the center to the left as the KER increases. This feature arises from the fact that the $ {\text{CH}}_2^ + $ lies between the H and the $ {\text{CH}}_3^ + $ in the concerted dissociation, and it feels the recoil both from H and from $ {\text{CH}}_3^ + $. Considering that the Coulomb potential from $ {\text{CH}}_3^ + $ is constant, the increase of the C-H dissociation energy will reduce the $ {\text{CH}}_2^ + $ kinetic energy. The belt in the Dalitz indicates that the sequential dissociation is a two-step process, with the first step being the dissociation of $ {{\text{C}}_2}{\text{H}}_6^{2 + } $ to generate H and metastable $ {{\text{C}}_2}{\text{H}}_5^{2 + } $, and the second step being the fragmentation of $ {{\text{C}}_2}{\text{H}}_5^{2 + } $ into $ {\text{CH}}_3^ + $ and $ {\text{CH}}_2^ + $.The Newton diagrams under different KER conditions are also reconstructed to give further evidence of the sequential dissociation from the metastable $ {{\text{C}}_2}{\text{H}}_5^{2 + } $, rather than from the metastable $ {\text{CH}}_3^ + $ or $ {\text{CH}}_4^ + $. In fact, for the former case, the center positions of the two half circles in the Newton diagram are correct. Oppositely, for the latter two cases, the center positions notably deviate from the expected values. This means the sequential dissociation from $ {{\text{C}}_2}{\text{H}}_5^{2 + } $ is dominant, which agrees excellently with the conclusion from the Dalitz plots.
      通信作者: 闫顺成, yanshuncheng@impcas.ac.cn ; 马新文, x.ma@impcas.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1602500)、中国科学院战略性先导科技专项(B)(批准号: XDB34020000)和中国科学院“西部青年学者”项目资助的课题.
      Corresponding author: YAN Shuncheng, yanshuncheng@impcas.ac.cn ; MA Xinwen, x.ma@impcas.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1602500), the Strategic Priority Research Program (B) of Chinese Academy of Science (Grant No. XDB34020000), and the Foundation of “Young Scholars in Western China” of the Chinese Academy of Sciences.
    [1]

    Mathur D 2004 Phys. Rep. 391 1Google Scholar

    [2]

    Adoui L, Muranaka T, Tarisien M, Legendre S, Laurent G, Cassimi A, Chesnel J Y, Fléchard X, Frémont F, Gervais B, Giglio E, Hennecart D 2006 Nucl. Instrum. Methods Phys. Res., Sect. B 245 94Google Scholar

    [3]

    Aitelhadjali Z, Kessal S, Quinto M A, Oubaziz D, Champion C 2016 Int. J. Mass Spectrom. 403 53Google Scholar

    [4]

    Shen Z J, Wang E L, Gong M M, Shan X, Chen X J 2016 J. Chem. Phys. 145 234303Google Scholar

    [5]

    Chen L, Wang E L, Shan X, Shen Z J, Zhao X, Chen X J 2021 Phys. Rev. A 104 032814Google Scholar

    [6]

    Jiang T, Wang B, Zhang Y, Wei L, Chen S, Yu W, Zou Y, Chen L, Wei B 2019 Phys. Rev. A 100 022705Google Scholar

    [7]

    Duley A, Kelkar A H 2023 Atoms 11 75Google Scholar

    [8]

    Wang X, Zhang Y, Lu D, Lu G C, Wei B, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 Phys. Rev. A 90 062705Google Scholar

    [9]

    Wei B, Zhang Y, Wang X, Lu D, Lu G C, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 J. Chem. Phys. 140 124303Google Scholar

    [10]

    Zhang Y, Jiang T, Wei L, Luo D, Wang X, Yu W, Hutton R, Zou Y, Wei B 2018 Phys. Rev. A 97 022703Google Scholar

    [11]

    Wei L, Chen S, Zhang Y, Wang B, Yu W, Ren B, Han J, Zou Y, Chen L, Wei B 2020 Eur. Phys. J. D 74 133Google Scholar

    [12]

    Das N, De S, Bhatt P, Safvan C P, Majumdar A 2023 J. Chem. Phys. 158 084307Google Scholar

    [13]

    Yuan H, Xu S, Wang E, Xu J, Gao Y, Zhu X, Guo D, Ma B, Zhao D, Zhang S, Yan S, Zhang R, Gao Y, Xu Z, Ma X 2022 J. Phys. Chem. Lett. 13 7594Google Scholar

    [14]

    Wang Y, Li Y, Gao Y, Chen Y, Zhou Z, Shen X, Jin G 2024 Nucl. Instrum. Methods Phys. Res., Sect. B 557 165547Google Scholar

    [15]

    Abplanalp M J, Kaiser R I 2016 Astrophys. J. 827 132Google Scholar

    [16]

    Kim Y S, Bennett C J, Chen L H, O'Brien K, Kaiser R I 2010 Astrophys. J. 711 744Google Scholar

    [17]

    Russo N D, Vervack Jr R J, Weaver H A, Lisse C M 2009 Icarus 200 271Google Scholar

    [18]

    Kanya R, Kudou T, Schirmel N, Miura S, Weitzel K M, Hoshina K, Yamanouchi K 2012 J. Chem. Phys. 136 204309Google Scholar

    [19]

    Schirmel N, Reusch N, Horsch P, Weitzel K M 2013 Faraday Discuss. 163 461Google Scholar

    [20]

    Boran Y, Gutsev G L, Kolomenskii A A, Zhu F, Schuessler A, Strohaber J 2018 J. Phys. B: At. Mol. Opt. Phys. 51 035003Google Scholar

    [21]

    Zhang Y, Ren B, Yang C L, Wei L, Wang B, Han J, Yu W, Qi Y, Zou Y, Chen L, Wang E, Wei B 2020 Commum. Chem. 3 160Google Scholar

    [22]

    Wei L, Lam C S, Zhang Y, Ren B, Han J, Wang B, Zou Y, Chen L, Lau K C, Wei B 2021 J. Phys. Chem. Lett. 12 5789Google Scholar

    [23]

    Yoshida S, Majima T, Tsuchida H, Saito M 2020 X-Ray Spectrom. 49 177Google Scholar

    [24]

    Moshammer R, Unverzagt M, Schmitt W, Ullrich J, Schmidt-Böcking H 1996 Nucl. Instrum. Methods Phys. Res., Sect. B 108 425Google Scholar

    [25]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar

    [26]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [27]

    Ullrich J, Schmidt-Böcking H 1987 Phys. Lett. A 125 193Google Scholar

    [28]

    郭大龙, 马新文, 冯文天, 张少锋, 朱小龙 2011 60 113401Google Scholar

    Guo D L, Ma X W, Feng W T, Zhang S F, Zhu X L 2011 Acta Phys. Sin. 60 113401Google Scholar

    [29]

    Yan S, Zhu X L, Zhang S F, Zhao D M, Zhang P, Wei B, Ma X 2020 Phys. Rev. A 102 032809Google Scholar

    [30]

    Yan S, Zhang P, Stumpf V, Gokhberg K, Zhang X C, Xu S, Li B, Shen L L, Zhu X L, Feng W T, Zhang S F, Zhao D M, Ma X 2018 Phys. Rev. A 97 010701Google Scholar

    [31]

    Falcinelli S, Rosi M, Candori P, Vecchiocattivi F, Farrar J M, Pirani F, Balucani N, Alagia M, Richter R, Stranges, S 2014 Lect. Notes Comput. Sci. 8579 554Google Scholar

  • 图 1  $ {{\text{C}}_2}{\text{H}}_6^{2 + } $离子C—C键解离后的TOF二维符合谱

    Fig. 1.  TOF 2D coincidence map in the C—C bond dissociation of the $ {{\text{C}}_2}{\text{H}}_6^{2 + } $ ion.

    图 2  红线为通道(1)的KER谱, 蓝线为通道(2)的总KER谱, 黑线为通道(2)中$ {\text{CH}}_2^ + $, $ {\text{CH}}_3^ + $离子的动能和

    Fig. 2.  Red line is the KER spectrum of channel (1), the blue line is the total KER spectrum of channel (2), and the black line is the sum of the kinetic energies of $ {\text{CH}}_2^ + $ and $ {\text{CH}}_3^ + $ ions in channel (2).

    图 3  通道(2)的Dalitz图, 其中(a), (b)和(c)分别对应的KER范围为0—6 eV, 6—9 eV和9—11 eV

    Fig. 3.  Dalitz plots of channel (2). The panel (a), (b), and (c) correspond to the KER range of 0–6 eV, 6–9 eV, and 9–11 eV, respectively.

    图 4  通道(2)的牛顿图, 其中(a), (b), (c)分别对应的KER范围为0—6 eV, 6—9 eV和9—11 eV; 图中将$ {\text{CH}}_3^ + $的动量大小定义为1, 方向沿X轴; 对$ {\text{CH}}_2^ + $和H离子的动量进行归一化后, 分别展示在上半平面和下半平面

    Fig. 4.  Newton diagrams of channel (2). The panel (a), (b), and (c) correspond to the KER range of 0–6 eV, 6–9 eV, and 9–11 eV, respectively. The momentum magnitude of $ {\text{CH}}_3^ + $ is defined as 1, and its direction is along X-axis. The momentum vectors of $ {\text{CH}}_2^ + $ and H are normalized to that of $ {\text{CH}}_3^ + $, and displayed in the upper and lower half planes, respectively.

    图 5  通道(2)的牛顿图, 其中(a), (b), (c)分别对应的KER范围为0—6 eV, 6—9 eV和9—11 eV; 图中将$ {\text{CH}}_2^ + $的动量大小定义为1, 方向沿X轴; 对$ {\text{CH}}_3^ + $和H的动量进行归一化后, 分别展示于上半平面和下半平面

    Fig. 5.  Newton diagrams of channel (2). The panel (a), (b), and (c) correspond to the KER range of 0–6 eV, 6–9 eV, and 9–11 eV, respectively. The momentum magnitude of $ {\text{CH}}_2^ + $ is defined as 1, and its direction is along X-axis. The momentum vectors of $ {\text{CH}}_3^ + $ and H are normalized to that of $ {\text{CH}}_2^ + $, and displayed in the upper and lower half planes, respectively.

    图 6  通道(2)的牛顿图, 其中(a), (b), (c)分别对应的KER范围为0—6 eV, 6—9 eV和9—11 eV; 图中将H的动量大小定义为1, 方向沿X轴; 对$ {\text{CH}}_2^ + $和$ {\text{CH}}_3^ + $的动量进行归一化后, 分别展示于上半平面和下半平面

    Fig. 6.  Newton diagrams of channel (2). The panel (a), (b), and (c) correspond to the KER range of 0–6 eV, 6–9 eV, and 9–11 eV, respectively. The momentum magnitude of H is defined as 1, and its direction is along X-axis. The momentum vectors of $ {\text{CH}}_2^ + $ and $ {\text{CH}}_3^ + $ are normalized to that of H, and displayed in the upper and lower half planes, respectively.

    Baidu
  • [1]

    Mathur D 2004 Phys. Rep. 391 1Google Scholar

    [2]

    Adoui L, Muranaka T, Tarisien M, Legendre S, Laurent G, Cassimi A, Chesnel J Y, Fléchard X, Frémont F, Gervais B, Giglio E, Hennecart D 2006 Nucl. Instrum. Methods Phys. Res., Sect. B 245 94Google Scholar

    [3]

    Aitelhadjali Z, Kessal S, Quinto M A, Oubaziz D, Champion C 2016 Int. J. Mass Spectrom. 403 53Google Scholar

    [4]

    Shen Z J, Wang E L, Gong M M, Shan X, Chen X J 2016 J. Chem. Phys. 145 234303Google Scholar

    [5]

    Chen L, Wang E L, Shan X, Shen Z J, Zhao X, Chen X J 2021 Phys. Rev. A 104 032814Google Scholar

    [6]

    Jiang T, Wang B, Zhang Y, Wei L, Chen S, Yu W, Zou Y, Chen L, Wei B 2019 Phys. Rev. A 100 022705Google Scholar

    [7]

    Duley A, Kelkar A H 2023 Atoms 11 75Google Scholar

    [8]

    Wang X, Zhang Y, Lu D, Lu G C, Wei B, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 Phys. Rev. A 90 062705Google Scholar

    [9]

    Wei B, Zhang Y, Wang X, Lu D, Lu G C, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 J. Chem. Phys. 140 124303Google Scholar

    [10]

    Zhang Y, Jiang T, Wei L, Luo D, Wang X, Yu W, Hutton R, Zou Y, Wei B 2018 Phys. Rev. A 97 022703Google Scholar

    [11]

    Wei L, Chen S, Zhang Y, Wang B, Yu W, Ren B, Han J, Zou Y, Chen L, Wei B 2020 Eur. Phys. J. D 74 133Google Scholar

    [12]

    Das N, De S, Bhatt P, Safvan C P, Majumdar A 2023 J. Chem. Phys. 158 084307Google Scholar

    [13]

    Yuan H, Xu S, Wang E, Xu J, Gao Y, Zhu X, Guo D, Ma B, Zhao D, Zhang S, Yan S, Zhang R, Gao Y, Xu Z, Ma X 2022 J. Phys. Chem. Lett. 13 7594Google Scholar

    [14]

    Wang Y, Li Y, Gao Y, Chen Y, Zhou Z, Shen X, Jin G 2024 Nucl. Instrum. Methods Phys. Res., Sect. B 557 165547Google Scholar

    [15]

    Abplanalp M J, Kaiser R I 2016 Astrophys. J. 827 132Google Scholar

    [16]

    Kim Y S, Bennett C J, Chen L H, O'Brien K, Kaiser R I 2010 Astrophys. J. 711 744Google Scholar

    [17]

    Russo N D, Vervack Jr R J, Weaver H A, Lisse C M 2009 Icarus 200 271Google Scholar

    [18]

    Kanya R, Kudou T, Schirmel N, Miura S, Weitzel K M, Hoshina K, Yamanouchi K 2012 J. Chem. Phys. 136 204309Google Scholar

    [19]

    Schirmel N, Reusch N, Horsch P, Weitzel K M 2013 Faraday Discuss. 163 461Google Scholar

    [20]

    Boran Y, Gutsev G L, Kolomenskii A A, Zhu F, Schuessler A, Strohaber J 2018 J. Phys. B: At. Mol. Opt. Phys. 51 035003Google Scholar

    [21]

    Zhang Y, Ren B, Yang C L, Wei L, Wang B, Han J, Yu W, Qi Y, Zou Y, Chen L, Wang E, Wei B 2020 Commum. Chem. 3 160Google Scholar

    [22]

    Wei L, Lam C S, Zhang Y, Ren B, Han J, Wang B, Zou Y, Chen L, Lau K C, Wei B 2021 J. Phys. Chem. Lett. 12 5789Google Scholar

    [23]

    Yoshida S, Majima T, Tsuchida H, Saito M 2020 X-Ray Spectrom. 49 177Google Scholar

    [24]

    Moshammer R, Unverzagt M, Schmitt W, Ullrich J, Schmidt-Böcking H 1996 Nucl. Instrum. Methods Phys. Res., Sect. B 108 425Google Scholar

    [25]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar

    [26]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [27]

    Ullrich J, Schmidt-Böcking H 1987 Phys. Lett. A 125 193Google Scholar

    [28]

    郭大龙, 马新文, 冯文天, 张少锋, 朱小龙 2011 60 113401Google Scholar

    Guo D L, Ma X W, Feng W T, Zhang S F, Zhu X L 2011 Acta Phys. Sin. 60 113401Google Scholar

    [29]

    Yan S, Zhu X L, Zhang S F, Zhao D M, Zhang P, Wei B, Ma X 2020 Phys. Rev. A 102 032809Google Scholar

    [30]

    Yan S, Zhang P, Stumpf V, Gokhberg K, Zhang X C, Xu S, Li B, Shen L L, Zhu X L, Feng W T, Zhang S F, Zhao D M, Ma X 2018 Phys. Rev. A 97 010701Google Scholar

    [31]

    Falcinelli S, Rosi M, Candori P, Vecchiocattivi F, Farrar J M, Pirani F, Balucani N, Alagia M, Richter R, Stranges, S 2014 Lect. Notes Comput. Sci. 8579 554Google Scholar

  • [1] 彭毅, 汪纯婧, 李晶, 高凯悦, 徐汉城, 陈传杰, 钱沐杨, 董冰岩, 王德真. 大气压填充式反应器等离子体解离二氧化碳反应机理数值模拟.  , 2025, 74(2): 025202. doi: 10.7498/aps.74.20241241
    [2] 徐佳伟, 许传喜, 张瑞田, 朱小龙, 冯文天, 赵冬梅, 梁贵云, 郭大龙, 高永, 张少锋, 苏茂根, 马新文. 态选择电荷交换实验测量以及对天体物理软X射线发射模型的检验.  , 2021, 70(8): 080702. doi: 10.7498/aps.70.20201685
    [3] 海帮, 张少锋, 张敏, 董达谱, 雷建廷, 赵冬梅, 马新文. 桌面飞秒极紫外光原子超快动力学实验装置.  , 2020, 69(23): 234208. doi: 10.7498/aps.69.20201035
    [4] 张敏, 闫顺成, 高永, 张少锋, 马新文. 分子离子碎裂过程中动能释放的校准方法.  , 2020, 69(20): 203401. doi: 10.7498/aps.69.20200901
    [5] 申丽丽, 闫顺成, 马新文, 朱小龙, 张少锋, 冯文天, 张鹏举, 郭大龙, 高永, 海帮, 张敏, 赵冬梅. 中能Ne4+离子诱导的羰基硫分子三体碎裂动力学分析.  , 2018, 67(4): 043401. doi: 10.7498/aps.67.20172163
    [6] 颜逸辉, 刘玉柱, 丁鹏飞, 尹文怡. 利用速度成像技术研究碘乙烷多光子电离解离动力学.  , 2018, 67(20): 203301. doi: 10.7498/aps.67.20181468
    [7] 孙启响, 闫冰. CH3I2+的二体、三体解离过程的理论研究.  , 2017, 66(9): 093101. doi: 10.7498/aps.66.093101
    [8] 刘玉柱, 陈云云, 郑改革, 金峰, Gregor Knopp. 氟利昂F113分子在飞秒激光作用下的多光子电离解离动力学.  , 2016, 65(5): 053302. doi: 10.7498/aps.65.053302
    [9] 林康, 宫晓春, 宋其迎, 季琴颖, 马俊杨, 张文斌, 陆培芬, 曾和平, 吴健. 双色圆偏振飞秒脉冲驱动CO分子不对称解离.  , 2016, 65(22): 224209. doi: 10.7498/aps.65.224209
    [10] 代丽姣, 李洪玉. 氘代乙烷团簇库仑爆炸产生高能氘核和中子的研究.  , 2014, 63(24): 243601. doi: 10.7498/aps.63.243601
    [11] 郭大龙, 马新文, 冯文天, 张少锋, 朱小龙. 反应显微成像谱仪动量及能量分辨因素分析.  , 2011, 60(11): 113401. doi: 10.7498/aps.60.113401
    [12] 许慎跃, 马新文, 任雪光, T. Pflüger, A. Dorn, J. Ullrich. 甲烷分子电子碰撞电离和解离的实验研究.  , 2011, 60(9): 093401. doi: 10.7498/aps.60.093401
    [13] 陈高飞, 公茂琼, 沈俊, 邹鑫, 吴剑峰. 水平管内二氟乙烷两相流动摩擦压降实验研究.  , 2010, 59(12): 8669-8675. doi: 10.7498/aps.59.8669
    [14] 曹士娉, 马新文, A. Dorn, M. Dürr, J. Ullrich. 近阈值下He原子的双电子电离实验中出射电子研究.  , 2007, 56(11): 6386-6392. doi: 10.7498/aps.56.6386
    [15] 马 靖, 丁 蕾, 顾学军, 方 黎, 张为俊, 卫立夏, 王 晶, 杨 斌, 黄超群, 齐 飞. 三氯乙烯的真空紫外同步辐射光电离和光解离.  , 2006, 55(6): 2708-2713. doi: 10.7498/aps.55.2708
    [16] 唐碧峰, 熊平凡, 张 秀, 张 冰. 溴乙烷分子的质量分辨阈值光谱.  , 2006, 55(9): 4483-4489. doi: 10.7498/aps.55.4483
    [17] 姚关心, 汪小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤. 丙酮分子的共振增强多光子电离解离过程的实验研究.  , 2006, 55(5): 2210-2214. doi: 10.7498/aps.55.2210
    [18] 张现仁, 沈志刚, 陈建峰, 汪文川. 乙烷在中孔分子筛MCM-41中吸附的计算机分子模拟.  , 2003, 52(1): 163-168. doi: 10.7498/aps.52.163
    [19] 胡正发, 王振亚, 孔祥蕾, 张先燚, 李海洋, 周士康, 王娟, 武国华, 盛六四, 张允武. 甲胺分子的同步辐射光电离解离质谱.  , 2002, 51(2): 235-239. doi: 10.7498/aps.51.235
    [20] 王超英, 陈立泉, 陈竹生, 何元康. 聚环氧乙烷硫氰化钠络合物(PEO-NaSCN)离子导体电学性能的研究.  , 1984, 33(6): 854-860. doi: 10.7498/aps.33.854
计量
  • 文章访问数:  461
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-02
  • 修回日期:  2025-01-17
  • 上网日期:  2025-01-24
  • 刊出日期:  2025-03-20

/

返回文章
返回
Baidu
map