-
铍金属与氧化铍都是重要核材料,铍的中子核反应数据对核能研发具有重大意义。宏观检验是核数据评价过程的重要环节,对确保核数据的可靠性与精确度至关重要。临界基准实验是目前核数据宏观检验最重要的标准。但此前研究发现,两个高度相似的铍反射层临界基准实验系列HMF-058与HMF-066在检验铍的中子反应数据时给出了矛盾的结论,不能指出铍相关数据的改进方向,导致这两个系列共14个实验无法被用于高精度的核数据检验。出射中子角分布是反应堆物理计算中的关键物理量,但核数据宏观检验中对其的关注度较低。本文通过改进铍(n,n)与(n,2n)反应的出射中子角分布数据提升了两个系列的理论计算与实验测量值的一致性。基于改进的核数据,所有计算与实验测量值的偏差均在1σ实验不确定度范围内,因此无法在此不确定度内拒绝两个系列实验的一致性。结合最新的整套铀核数据,两者的一致性还有少许提升。若要得出两个系列期望值系统性差异的结论,仍需降低实验不确定度或开展更高精度的实验。Beryllium metal and beryllium oxide are critical nuclear materials, with neutron-induced nuclear reaction data on beryllium playing a crucial role in nuclear energy research and development. Macroscopic validation is an essential step in the nuclear data evaluation process, providing a means to assess the reliability and accuracy of such data. Critical benchmark experiments serve as the most important references for this validation. However, discrepancies have been observed in two closely related series of beryllium-reflector fast-spectrum critical benchmark experiments, HMF-058 and HMF-066, which are widely used in current nuclear data validation. A previous systematic study indicates that these two series of experiments yield conflicting conclusions regarding the validation of neutron-induced nuclear reaction data for beryllium, creating ambiguity in improving beryllium nuclear data. As a result, the total 14 experiments in these two series cannot currently support high-precision validation of nuclear data. Even though most investigations on nuclear data validation and adjustment focus mainly on cross sections, the angular distribution of emitted neutrons is one key factor in reactor physics calculations. In this paper, we address these inconsistencies by improving the secondary angular distributions of the (n,n) and (n,2n) reactions for beryllium, leading to better agreement between theoretical calculations (C) and experimental results (E) for the two series with the cumulative χ2 value reduced from 7.58 using the ENDF/B-VII.1 evaluation to 4.52. All calculations based on the improved nuclear data agree with the experimental measurements within 1σ experimental uncertainty. With these enhancements, the consistency between the HMF-058 and HMF-066 series cannot be rejected within the 1σ experimental uncertainty. When combined with the latest comprehensive uranium nuclear data evaluation, this consistency is slightly further improved, with the cumulative χ2 value reduced again to 4.36. Despite these advances, systematic differences in the expected values of C/E between the two series still exist. C/E values of the HMF-066 series are generally 230-330 pcm lower than those of the HMF-058 series, comparable with their experimental uncertainties of 200-400 pcm. Therefore, drawing a definitive conclusion about this systematic difference remains challenging. If the current improvements in differential nuclear data based on experimental data of 9Be are accurate, the HMF-058 series experiments appear to be more reliable than the HMF-066 series. Ultimately, achieving this goal requires either a reduction in experimental uncertainties or the design and execution of higher-precision integral experiments.
-
Keywords:
- critical benchmark experiments /
- neutron nuclear data /
- macroscopic validation /
- beryllium reflector
-
[1] Hou M D, Zhou X W, Liu B 2022Nucl. Eng. Technol. 54 4393.
[2] Chen S L, Yuan C X 2020Nucl. Mater. Energy 22 100728.
[3] Chen S L, He X J, Yuan C X 2020Nucl. Sci. Tech. 31 32.
[4] Brown D A, Chadwick M B, Capote R, Kahler A C, Trkov A, Herman M W, Sonzogni A A, Danon Y, Carlson A D, Dunn M, Smith D L, Hale G M, Arbanas G, Arcilla R, Bates C R, Beck B, Becker B, Brown F, Casperson R J, Conlin J, Cullen D E, Descalle M A, Firestone R, Gaines T, Guber K H, Hawari A I, Holmes J, Johnson T D, Kawano T, Kiedrowski B C, Koning A J, Kopecky S, Leal L, Lestone J P, Lubitz C, Márquez Damián J I, Mattoon C M, McCutchan E A, Mughabghab S, Navratil P, Neudecker D, Nobre G P A, Noguere G, Paris M, Pigni M T, Plompen A J, Pritychenko B, Pronyaev V G, Roubtsov D, Rochman D, Romano P, Schillebeeckx P, Simakov S, Sin M, Sirakov I, Sleaford B, Sobes V, Soukhovitskii E S, Stetcu I, Talou P, Thompson I, van der Marck S, Welser-Sherrill L, Wiarda D, White M, Wormald J L, Wright R Q, Zerkle M, Žerovnik G, Zhu Y 2018Nucl. Data Sheets 148 1.
[5] Plompen A J M, Cabellos O, De Saint Jean C, Fleming M, Algora A, Angelone M, Archier P, Bauge E, Bersillon O, Blokhin A, Cantargi F, Chebboubi A, Diez C, Duarte H, Dupont E, Dyrda J, Erasmus B, Fiorito L, Fischer U, Flammini D, Foligno D, Gilbert M R, Granada J R, Haeck W, Hambsch F J, Helgesson P, Hilaire S, Hill I, Hursin M, Ichou R, Jacqmin R, Jansky B, Jouanne C, Kellett M A, Kim D H, Kim H I, Kodeli I, Koning A J, Konobeyev A Y, Kopecky S, Kos B, Krása A, Leal L C, Leclaire N, Leconte P, Lee Y O, Leeb H, Litaize O, Majerle M, Márquez Damián J I, Michel-Sendis F, Mills R W, Morillon B, Noguère G, Pecchia M, Pelloni S, Pereslavtsev P, Perry R J, Rochman D, Röhrmoser A, Romain P, Romojaro P, Roubtsov D, Sauvan P, Schillebeeckx P, Schmidt K H, Serot O, Simakov S, Sirakov I, Sjöstrand H, Stankovskiy A, Sublet J C, Tamagno P, Trkov A, van der Marck S, Álvarez-Velarde F, Villari R, Ware T C, Yokoyama K, Žerovnik G 2020Eur. Phys. J. A 56 181.
[6] Iwamoto O, Iwamoto N, Kunieda S, Minato F, Nakayama S, Abe Y, Tsubakihara K, Okumura S, Ishizuka C, Yoshida T, Chiba S, Otuka N, Sublet J C, Iwamoto H, Yamamoto K, Nagaya Y, Tada K, Konno C, Matsuda N, Yokoyama K, Taninaka H, Oizumi A, Fukushima M, Okita S, Chiba G, Sato S, Ohta M, Kwon S 2023J. Nucl. Sci. Technol. 60 1.
[7] Ge Z G, Chen Y G 2020Nucl. Phys. Rev. 37 309(in Chinese) [葛智刚, 陈永静2020原子核物理评论37 309].
[8] Ge Z, Xu R, Wu H, Zhang Y, Chen G, Jin Y, Shu N, Chen Y, Tao X, Tian Y, Liu P, Qian J, Wang J, Zhang H, Liu L, Huang X 2020EPJ Web Conf. 239 09001.
[9] Zabrodskaya S V, Ignatyuk A V, Koshcheev V N, Manochin V N, Nikolaev M N, Pronyaev V G 2007 Probl. At. Sci. Technol. Ser. Nucl. React. Constants. issue 1-2 https://vant.ippe.ru/en/year2007/neutron-constants/774-1.html
[10] Briggs J B, Scott L, Nouri A 2003Nucl. Sci. Eng. 145 1.
[11] Wu H C, Zhang H Y 2024At. Energy Sci. Tech. 58 1271(in Chinese) [吴海成, 张环宇2024原子能科学技术58 1271].
[12] Hu Z H, Yin Y P, Ye T 2016Acta Physica Sinica 65 212801(in Chinese) [胡泽华, 尹延朋, 叶涛2016 65 212801].
[13] NEA 2024“ICSBEP Handbook 2022-23”, International Criticality Safety Benchmark Evaluation Project Handbook (Database) https://www.oecd-nea.org/jcms/pl_20291[2024-11-27]
[14] Romano P K, Horelik N E, Herman B R, Nelson A G, Forget B, Smith K 2015Ann. Nucl. Energy 82 90.
[15] Chen S L, Vandermeersch E, Tamagno P, Bernard D, Noguere G, Blaise P 2021Ann. Nucl. Energy 163 108553.
[16] Otuka N, Dupont E, Semkova V, Pritychenko B, Blokhin A I, Aikawa M, Babykina S, Bossant M, Chen G, Dunaeva S, Forrest R A, Fukahori T, Furutachi N, Ganesan S, Ge Z, Gritzay O O, Herman M, Hlavač S, Katō K, Lalremruata B, Lee Y O, Makinaga A, Matsumoto K, Mikhaylyukova M, Pikulina G, Pronyaev V G, Saxena A, Schwerer O, Simakov S P, Soppera N, Suzuki R, Takács S, Tao X, Taova S, Tárkányi F, Varlamov V V, Wang J, Yang S C, Zerkin V, Zhuang Y 2014Nucl. Data Sheets 120 272.
[17] Zerkin V V, Pritychenko B 2018Nucl. Instrum. Methods Phys. Res. A 888 31.
[18] Shibata K, Iwamoto O, Nakagawa T, Iwamoto N, Ichihara A, Kunieda S, Chiba S, Furutaka K, Otuka N, Ohsawa T, Murata T, Matsunobu H, Zukeran A, Kamada S, Katakuta J 2011J. Nucl. Sci. Technol. 48 1.
[19] Chadwick M B, Herman M, Obložinský P, Dunn M E, Danon Y, Kahler A C, Smith D L, Pritychenko B, Arbanas G, Arcilla R, Brewer R, Brown D A, Capote R, Carlson A D, Cho Y S, Derrien H, Guber K, Hale G M, Hoblit S, Holloway S, Johnson T D, Kawano T, Kiedrowski B C, Kim H, Kunieda S, Larson N M, Leal L, Lestone J P, Little R C, McCutchan E A, MacFarlane R E, MacInnes M, Mattoon C M, McKnight R D, Mughabghab S F, Nobre G P A, Palmiotti G, Palumbo A, Pigni M T, Pronyaev V G, Sayer R O, Sonzogni A A, Summers N C, Talou P, Thompson I J, Trkov A, Vogt R L, van der Marck S C, Wallner A, White M C, Wiarda D, Young P G 2011Nucl. Data Sheets 112 2887.
[20] Wang T X, Chen S L, Xu S Q, Li Z, Chen S Y, Wu X F 2023Ann. Nucl. Energy 192 110017.
[21] Chadwick M B, Capote R, Trkov A, Herman M W, Brown D A, Hale G M, Kahler A C, Talou P, Plompen A J, Schillebeeckx P, Pigni M T, Leal L, Danon Y, Carlson A D, Romain P, Morillon B, Bauge E, Hambsch F J, Kopecky S, Giorginis G, Kawano T, Lestone J, Neudecker D, Rising M, Paris M, Nobre G P A, Arcilla R, Cabellos O, Hill I, Dupont E, Koning A J, Cano-Ott D, Mendoza E, Balibrea J, Paradela C, Durán I, Qian J, Ge Z, Liu T, Hanlin L, Ruan X, Haicheng W, Sin M, Noguere G, Bernard D, Jacqmin R, Bouland O, De Saint Jean C, Pronyaev V G, Ignatyuk A V, Yokoyama K, Ishikawa M, Fukahori T, Iwamoto N, Iwamoto O, Kunieda S, Lubitz C R, Salvatores M, Palmiotti G, Kodeli I, Kiedrowski B, Roubtsov D, Thompson I, Quaglioni S, Kim H I, Lee Y O, Fischer U, Simakov S, Dunn M, Guber K, Márquez Damián J I, Cantargi F, Sirakov I, Otuka N, Daskalakis A, McDermott B J, van der Marck S C 2018Nucl. Data Sheets 148 189.
[22] Capote R, Trkov A, Sin M, Pigni M T, Pronyaev V G, Balibrea J, Bernard D, Cano-Ott D, Danon Y, Daskalakis A, Goričanec T, Herman M W, Kiedrowski B, Kopecky S, Mendoza E, Neudecker D, Leal L, Noguere G, Schillebeeckx P, Sirakov I, Soukhovitskii E S, Stetcu I, Talou P 2018Nucl. Data Sheets 148 254.
[23] Carlson A D, Pronyaev V G, Capote R, Hale G M, Chen Z P, Duran I, Hambsch F J, Kunieda S, Mannhart W, Marcinkevicius B, Nelson R O, Neudecker D, Noguere G, Paris M, Simakov S P, Schillebeeckx P, Smith D L, Tao X, Trkov A, Wallner A, Wang W 2018Nucl. Data Sheets 148 143.
[24] Broadhead B L, Rearden B T, Hopper C M, Wagschal J J, Parks C V 2004Nucl. Sci. Eng. 146 340.
[25] Nouri A, Nagel P, Briggs J B, Ivanova T 2003Nucl. Sci. Eng. 145 11.
[26] Wang T X, Xu S Q, Li Z, Chen S L 2025Ann. Nucl. Energy 210 110851.
[27] Cabellos O, Hursin M, Palmiotti P 2023EPJ Web Conf. 284 14012.
计量
- 文章访问数: 140
- PDF下载量: 6
- 被引次数: 0