搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超构表面多通大容量完美矢量涡旋光束的产生及调控研究

张胜蓝 田喜敏 许军伟 徐亚宁 李亮 刘杰龙

引用本文:
Citation:

基于超构表面多通大容量完美矢量涡旋光束的产生及调控研究

张胜蓝, 田喜敏, 许军伟, 徐亚宁, 李亮, 刘杰龙
cstr: 32037.14.aps.74.20241725

Generation and independent-manipulation of multi-channel high-capacity perfect vector vortex beams based on geometric metasurfaces

ZHANG Shenglan, TIAN Ximin, XU Junwei, XU Yaning, LI Liang, LIU Jielong
cstr: 32037.14.aps.74.20241725
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 完美矢量涡旋光束除具有螺旋相位、环状强度分布及非均匀偏振分布外, 其亮环半径及环宽度恒定, 不受拓扑荷数变化的影响, 且同时携带自旋角动量和轨道角动量, 因此在很多光学领域具有重要应用. 超构表面作为一种亚波长结构排列而成的平面光学器件, 能够精准调控电磁波的相位、偏振和振幅, 为集成化矢量光场调控器件的实现提供变革性解决方案. 然而, 现有超构表面在生成产生多通大容量、偏振和轨道角动量独立操控的完美矢量涡旋光束方面仍面临严峻挑战. 为此, 本文基于超构表面平台, 利用纯几何相位调制的自旋多路复用方案, 通过叠加两正交偏振完美涡旋光束, 实现了多通大容量完美矢量涡旋光束. 通过调控两正交偏振完美涡旋光束的初始相位差、振幅比及拓扑荷数, 实现了具备任意偏振阶次和偏振分布特性的完美矢量涡旋光束; 通过精心设计超构表面相位分布及光束传播路径, 生成了多重完美矢量涡旋光束阵列. 此外, 基于完美矢量涡旋光束偏振阶次和偏振态两个并行维度, 本文成功演示了一种兼具安全性高和强鲁棒性的光学信息加密方案. 该工作旨在建立一个超紧凑、稳健的平台, 以在中红外波段生成多通大容量完美矢量涡旋光束, 推动其在光学加密、粒子操控和量子光学等领域的应用.
    Perfect vector vortex beams (PVVBs), which are characterized by spiral phase, donut-shaped intensity profile and inhomogeneous polarization of a light beam carrying spin angular momentum (SAM) and orbital angular momentum (OAM), have a constant bright ring radius and ring width which are unaffected by the changes of their carrying topological charge (TC), thus making them highly valuable in many optical fields. Metasurfaces, as planar optical devices composed of subwavelength nanostructures, can precisely control the phase, polarization, and amplitude of electromagnetic waves, providing a revolutionary solution for integrated vector field manipulation devices. However, existing metasurfaces still encounter significant challenges in generating high-capacity, polarization- and orbital angular momentum-independent controlled perfect vector vortex beams. In order to solve this problem, in this work a spin-multiplexing scheme based on pure geometric phase modulation on a metasurface platform is used to achieve high-capacity polarization- and OAM-independent controlled PVVBs. The metasurfaces with a combined phase profile of a spiral phase plate, an axicon, and a focusing (Fourier) lens are spatially encoded by rectangular Ge2Sb2Se4Te1 (GSST) nanopillar with various orientations on a CaF2 square substrate. When illuminated by circularly polarized light with opposite chirality, the metasurfaces can generate various perfect vector vortex beams (PVBs) with arbitrary topological charges. For linearly polarized incidence, the metasurface is employed to induce PVVBs by coherently superposing PVBs with spin-opposite OAM modes. The polarization states and polarization orders of the generated PVVBs can be flexibly customized by controlling the initial phase difference, amplitude ratio, and topological charges of the two orthogonal PVB components. Notably, through precisely designing the metasurface’s phase distribution and the propagation path of the generated beams, the space and polarization multiplexing can be realized in a compact manner of spatial PVVB arrays, significantly increasing both information channels and dimensions for the development of vortex communication capacity. With these findings, we demonstrate an innovative optical information encryption scheme by using a single metasurface to encode personalized polarization states and OAM in parallel channels embedded within multiple PVVBs. This work aims to establish an ultra-compact, robust platform for generating multi-channel high-capacity polarization- and OAM-independent controlled PVVBs in the mid-infrared range, and promote their applications in optical encryption, particle manipulation, and quantum optics.
      通信作者: 田喜敏, xmtian007@zua.edu.cn ; 许军伟, xujunwei001@zua.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12004347)、河南省科技公关(批准号: 242102211081, 232102320057)、河南省青年骨干工程(批准号: 2023GGJS113)、河南省高等学校重点科研项目(批准号: 24A140025, 25B140009)和航空科学基金(批准号: 2020Z073055002)资助的课题.
      Corresponding author: TIAN Ximin, xmtian007@zua.edu.cn ; XU Junwei, xujunwei001@zua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12004347), the Scientific and Technological Project in Henan Province, China (Grant Nos. 242102211081, 232102320057), the Youth Backbone Project in Henan Province, China (Grant No. 2023GGJS113), the Key Scientific Research Projects of Colleges and Universities in Henan Province, China (Grant Nos. 24A140025, 25B140009), and the Aeronautical Science Foundation of China (Grant No. 2020Z073055002).
    [1]

    Guo Y H, Zhang S C, Pu M B, He Q, Jin J J, Xu M F, Zhang Y X, Gao P, Luo X G 2021 Light: Sci. Appl. 10 63Google Scholar

    [2]

    Shen Y J, Yang X L, Naidoo D, Fu X, Forbes A 2020 Optica 7 820Google Scholar

    [3]

    Liu Z X, Liu Y Y, Ke Y G, Liu Y C, Shu W X, Luo H L, Wen S C 2016 Photonics Res. 5 15Google Scholar

    [4]

    Liu M Z, Huo P C, Zhu W Q, Zhang C, Zhang S, Song M W, Zhang S, Zhou Q W, Chen L, Lezec H 2021 Nat. Commun. 12 2230Google Scholar

    [5]

    Xu Y N, Tian X M, Xu J W, Zhang S L, Huang Y F, Li L, Liu J L, Xu K, Yu Z J, Li Z Y 2024 J. Phys. D: Appl. Phys. 57 425104Google Scholar

    [6]

    Ma Y B, Rui G H, Gu B, Cui Y P 2017 Sci. Rep. 7 14611Google Scholar

    [7]

    Shao W, Huang S J, Liu X P, Chen M S 2018 Opt. Commun. 427 545Google Scholar

    [8]

    Xu Y, Su X R, Chai Z, Li J L 2024 Laser Photon. Rev. 18 2300355Google Scholar

    [9]

    Niv A A, Biener G, Kleiner V, Hasman E 2006 Opt. Express 14 4208Google Scholar

    [10]

    Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V 2013 Opt. Lett. 38 534Google Scholar

    [11]

    Vaity P, Rusch L 2015 Opt. Lett. 40 597Google Scholar

    [12]

    Li D L, Feng S T, Nie S P, Chang C L, Ma J, Yuan C J 2019 J. Appl. Phys. 125 073105Google Scholar

    [13]

    Zou X J, Zheng G G, Yuan Q, Zang W B, Chen R, Li T Y, Li L, Wang S M, Wang Z L, Zhu S N 2020 PhotoniX 1 1Google Scholar

    [14]

    Zhang C Y, Zhang B F, Ge S K, Han C X, Wang S Z, Han Q Y, Gao W, Chu T S, Dong J, Zhang M D 2024 Opt. Express 32 31359Google Scholar

    [15]

    Zhang X L, Gong Y H, Li M, Li H 2024 Opt. Express 32 8069Google Scholar

    [16]

    Kim I, Ansari M A, Mehmood M Q, Kim W Q, Jang J, Zubair M, Kim Y K, Rho J 2020 Adv. Mater. 32 2004664Google Scholar

    [17]

    Huang Y F, Tian X M, Zhang S L, Xu Y N, Xu J W, Yu Z J, Jiang T, Li Z Y 2024 Opt. Lasers Eng. 183 108523Google Scholar

    [18]

    He H R, Peng M Y, Cao G T, Li Y B, Liu H, Yang H 2024 Opt. Laser Technol. 180 111555Google Scholar

    [19]

    Liu Y C, Ke Y G, Zhou J X, Liu Y Y, Luo H L, Wen S C, Fan D Y 2017 Sci. Rep. 7 44096Google Scholar

    [20]

    Zhang Y C, Liu W W, Gao J, Yang X D 2018 Adv. Opt. Mater. 6 1701228Google Scholar

    [21]

    Tian S N, Qian, Z H, Guo H M 2022 Opt. Express 30 21808Google Scholar

    [22]

    Liu Y, Zhou C X, Guo K L, Wei Z C, Liu H Z 2022 Opt. Express 30 30881Google Scholar

    [23]

    Vogliardi A, Ruffato G, Bonaldo D, Zilio S D, Romanato F 2023 Opt. Lett. 48 4925Google Scholar

    [24]

    Gu M N, Cheng C, Zhan Z J, Zhang Z H, Cui G S, Zhou Y X, Zeng X Y, Gao S, Choi D Y, Cheng C F 2024 ACS Photonics 11 204Google Scholar

    [25]

    He J N, Wan M L, Zhang X P, Yuan S Q, Zhang L F, Wang J Q 2022 Opt. Express 30 4806Google Scholar

    [26]

    Zhou T, Liu Q, Liu Y S, Zang X F 2020 Opt. Lett. 45 5941Google Scholar

    [27]

    Huang K, Deng J, Leong H S, Yap S L K, Yang R B, Teng J H, Liu H 2019 Laser Photonics Rev. 13 1800289Google Scholar

    [28]

    Xie J F, Guo H M, Zhuang S L, Hu J B 2021 Opt. Express 29 3081Google Scholar

    [29]

    Zhang Z H, Li T, Jiao X F, Song G F, Xu Y 2020 Appl. Sci. 10 5716Google Scholar

  • 图 1  (a)基于超构表面生成多通大容量PVVBs的效果示意图; (b) HyOPS模型; (c) 螺旋相位、锥透镜相位和双曲透镜相位叠加而成的超构表面相位剖面

    Fig. 1.  (a) Schematic illustration of the metasurface-enabled generation of multi-channel high-capacity PVVBs; (b) the HyOPS model; (c) the phase profile of the metasurface obtained by combining the phases of a spiral phase plate, an axicon, and a hyperbolic metalens.

    图 2  (a) 基于纯几何相位调制的自旋多路复用超构表面生成PVVB原理图; (b)最优单元结构在不同波长x-, y-LP光入射下的透射率(Txx, Tyy)和相移(ϕxx, ϕyy); (c) 超构原子在波长为4.4 μm x-LP、和y-LP光入射下产生的磁场HyHx分布剖面图; (d) 当GSST纳米柱处于不同旋向角时, 最优单元结构在圆偏振光入射下的透射率和相移, 插图为纳米柱单元结构透视图和俯视图

    Fig. 2.  (a) Operating principle for generating multi-channel high-capacity PVVBs by using a spin-multiplexed metasurface based on pure geometric phase modulation; (b) simulated transmission (Txx, Tyy) and phase shift (ϕxx, ϕyy) of the optimized unit cell under x- and y-polarized illumination at different wavelengths; (c) magnetic components Hy and Hx existing in GSST nanopillar excited by x-polarized and y-polarized incident light of λ = 4.4 μm; (d) calculated transmission and phase shift of the optimized unit cell under circularly polarized illumination as a function of the rotation angle of the anisotropic GSST nanopillars, with insets showing the perspective and top views of unit cells.

    图 3  x-LP光照射下, (a) 4种模式PVVBs在x-z平面上电场强度分布; (b)在焦平面上电场强度分布曲线; (c)在焦平面上亮环半径; (d)在z = 140, 200和260 μm三个横截面上的亮环半径; (e)在焦平面上的亮环宽度; (f)转化效率; (g)在HyOPS上位置分布; (h) x-LP光照射下, 4种模式PVVBs在不同偏振片下对应的电场强度分布, 斯托克斯参数(S0, S1, S2S3)及偏振方向(Ω)

    Fig. 3.  Under x-LP illumination, (a) the electric field intensity distributions of the four mode PVVBs in the x-z plane; (b) the intensity profiles at the focal plane; (c) the radii of the bright rings at the focal plane; (d) the radii of the bright rings at z = 140, 200 and 260 μm cross-sections; (e) the widths of the bright rings at the focal plane; (f) conversion efficiency; (g) their spatial distributions on the HyOPS; (h) under x-LP illumination, the electric field intensity distributions, Stokes parameters (S0, S1, S2 and S3) and polarization orientations (Ω) of the four mode PVVBs under different polarizers.

    图 4  超构表面MF5在LCP光下生成RCP PVBs阵列的电场强度分布图(a)及在LP光下生成的32重PVVBs Ex分布图(b)和Ey分布图(c); (d)对应模式PVVBs的矢量场分布和偏振角度分布; (e) PVVBs代码表; (f) 编码方法和编码表; (g) 105个包含两字节的十六进制数序列; (h), (i)解密的文本信息

    Fig. 4.  Electric field intensity distributions of the RCP PVB array generated by the metasurface MF5 under LCP illumination (a), and Ex (b) and Ey (c) intensity distributions of 32-fold PVVBs generated by the metasurface MF5 under LP illumination; (d) vector field distributions and polarization orientation of the corresponding mode PVVBs; (e) codebook of the PVVBs; (f) encoding method and the encoding diagram; (g) a sequence of 105 hexadecimal numbers consisting of two bytes; (h), (i) the decrypted text information.

    表 1  Mode 1—4 PVVBs对应的具体参数

    Table 1.  Specific parameters of the mode 1–4 PVVBs.

    ModeMNlnlm(∆x, y)/μmf/μmδ
    12∶1–11(0, 0)2000
    21∶2–33(0, 0)200π/2
    31∶13–3(0, 0)200π
    41∶1–66(0, 0)2003π/2
    下载: 导出CSV

    表 2  MF5的具体参数

    Table 2.  Specific parameters of the MF5.

    SCslnlmx/μmy/μmf/μmδ
    11–89–150350200π/15
    21/8–12–503502007π/15
    31/4–445035020010π/15
    41–881503502002π/15
    51/2–56–15025020015π/15
    61/2–66–502502006π/15
    71/8–11502502000
    81/8–2215025020014π/15
    91/4–33–1501502009π/15
    101/2–55–501502008π/15
    111/2–67501502005π/15
    121/8–2315015020013π/15
    131–78–150502003π/15
    141/4–34–505020012π/15
    151/4–45505020011π/15
    161–77150502004π/15
    171/8–11–150–5030012π/15
    181/4–44–50–503003π/15
    191/4–4550–503002π/15
    201/8–12150–503008π/15
    211/2–56–150–15030014π/15
    221/8–23–50–1503005π/15
    231/2–6650–1503006π/15
    241/2–55150–1503007π/15
    251–77–150–250300π/15
    261–78–50–2503004π/15
    271–8950–25030011π/15
    281/8–22150–25030014π/15
    291/4–33–150–35030010π/15
    301–88–50–35030015π/15
    311/2–6750–35030013π/15
    321/4–34150–3503009π/15
    下载: 导出CSV
    Baidu
  • [1]

    Guo Y H, Zhang S C, Pu M B, He Q, Jin J J, Xu M F, Zhang Y X, Gao P, Luo X G 2021 Light: Sci. Appl. 10 63Google Scholar

    [2]

    Shen Y J, Yang X L, Naidoo D, Fu X, Forbes A 2020 Optica 7 820Google Scholar

    [3]

    Liu Z X, Liu Y Y, Ke Y G, Liu Y C, Shu W X, Luo H L, Wen S C 2016 Photonics Res. 5 15Google Scholar

    [4]

    Liu M Z, Huo P C, Zhu W Q, Zhang C, Zhang S, Song M W, Zhang S, Zhou Q W, Chen L, Lezec H 2021 Nat. Commun. 12 2230Google Scholar

    [5]

    Xu Y N, Tian X M, Xu J W, Zhang S L, Huang Y F, Li L, Liu J L, Xu K, Yu Z J, Li Z Y 2024 J. Phys. D: Appl. Phys. 57 425104Google Scholar

    [6]

    Ma Y B, Rui G H, Gu B, Cui Y P 2017 Sci. Rep. 7 14611Google Scholar

    [7]

    Shao W, Huang S J, Liu X P, Chen M S 2018 Opt. Commun. 427 545Google Scholar

    [8]

    Xu Y, Su X R, Chai Z, Li J L 2024 Laser Photon. Rev. 18 2300355Google Scholar

    [9]

    Niv A A, Biener G, Kleiner V, Hasman E 2006 Opt. Express 14 4208Google Scholar

    [10]

    Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V 2013 Opt. Lett. 38 534Google Scholar

    [11]

    Vaity P, Rusch L 2015 Opt. Lett. 40 597Google Scholar

    [12]

    Li D L, Feng S T, Nie S P, Chang C L, Ma J, Yuan C J 2019 J. Appl. Phys. 125 073105Google Scholar

    [13]

    Zou X J, Zheng G G, Yuan Q, Zang W B, Chen R, Li T Y, Li L, Wang S M, Wang Z L, Zhu S N 2020 PhotoniX 1 1Google Scholar

    [14]

    Zhang C Y, Zhang B F, Ge S K, Han C X, Wang S Z, Han Q Y, Gao W, Chu T S, Dong J, Zhang M D 2024 Opt. Express 32 31359Google Scholar

    [15]

    Zhang X L, Gong Y H, Li M, Li H 2024 Opt. Express 32 8069Google Scholar

    [16]

    Kim I, Ansari M A, Mehmood M Q, Kim W Q, Jang J, Zubair M, Kim Y K, Rho J 2020 Adv. Mater. 32 2004664Google Scholar

    [17]

    Huang Y F, Tian X M, Zhang S L, Xu Y N, Xu J W, Yu Z J, Jiang T, Li Z Y 2024 Opt. Lasers Eng. 183 108523Google Scholar

    [18]

    He H R, Peng M Y, Cao G T, Li Y B, Liu H, Yang H 2024 Opt. Laser Technol. 180 111555Google Scholar

    [19]

    Liu Y C, Ke Y G, Zhou J X, Liu Y Y, Luo H L, Wen S C, Fan D Y 2017 Sci. Rep. 7 44096Google Scholar

    [20]

    Zhang Y C, Liu W W, Gao J, Yang X D 2018 Adv. Opt. Mater. 6 1701228Google Scholar

    [21]

    Tian S N, Qian, Z H, Guo H M 2022 Opt. Express 30 21808Google Scholar

    [22]

    Liu Y, Zhou C X, Guo K L, Wei Z C, Liu H Z 2022 Opt. Express 30 30881Google Scholar

    [23]

    Vogliardi A, Ruffato G, Bonaldo D, Zilio S D, Romanato F 2023 Opt. Lett. 48 4925Google Scholar

    [24]

    Gu M N, Cheng C, Zhan Z J, Zhang Z H, Cui G S, Zhou Y X, Zeng X Y, Gao S, Choi D Y, Cheng C F 2024 ACS Photonics 11 204Google Scholar

    [25]

    He J N, Wan M L, Zhang X P, Yuan S Q, Zhang L F, Wang J Q 2022 Opt. Express 30 4806Google Scholar

    [26]

    Zhou T, Liu Q, Liu Y S, Zang X F 2020 Opt. Lett. 45 5941Google Scholar

    [27]

    Huang K, Deng J, Leong H S, Yap S L K, Yang R B, Teng J H, Liu H 2019 Laser Photonics Rev. 13 1800289Google Scholar

    [28]

    Xie J F, Guo H M, Zhuang S L, Hu J B 2021 Opt. Express 29 3081Google Scholar

    [29]

    Zhang Z H, Li T, Jiao X F, Song G F, Xu Y 2020 Appl. Sci. 10 5716Google Scholar

  • [1] 师鹏博, 杨晨, 尹晓金, 王洁. 聚焦双环完美涡旋光束对瑞利微粒的俘获.  , 2025, 74(8): . doi: 10.7498/aps.74.20241768
    [2] 高雨洁, 李晋红, 王静, 刘晋宏, 尹晓金. 柱矢量涡旋光束在自由空间中传输时角动量的全矢量特性.  , 2025, 74(5): 059202. doi: 10.7498/aps.74.20241344
    [3] 张卓, 张景风, 孔令军. 基于光束偏移器的光的轨道角动量分束器.  , 2024, 73(7): 074201. doi: 10.7498/aps.73.20231874
    [4] 徐梦敏, 李晓庆, 唐荣, 季小玲. 风控热晕对双模涡旋光束大气传输的轨道角动量和相位奇异性的影响.  , 2023, 72(16): 164202. doi: 10.7498/aps.72.20230684
    [5] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响.  , 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [6] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器.  , 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [7] 蒋基恒, 余世星, 寇娜, 丁召, 张正平. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性.  , 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [8] 崔粲, 王智, 李强, 吴重庆, 王健. 长周期多芯手征光纤轨道角动量的调制.  , 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [9] 付时尧, 高春清. 利用衍射光栅探测涡旋光束轨道角动量态的研究进展.  , 2018, 67(3): 034201. doi: 10.7498/aps.67.20171899
    [10] 柯熙政, 谌娟, 杨一明. 在大气湍流斜程传输中拉盖高斯光束的轨道角动量的研究.  , 2014, 63(15): 150301. doi: 10.7498/aps.63.150301
    [11] 李铁, 谌娟, 柯熙政, 吕宏. 大气信道中单光子轨道角动量纠缠特性的研究.  , 2012, 61(12): 124208. doi: 10.7498/aps.61.124208
    [12] 齐晓庆, 高春清, 辛璟焘, 张戈. 基于激光光束轨道角动量的8位数据信号产生与检测的实验研究.  , 2012, 61(17): 174204. doi: 10.7498/aps.61.174204
    [13] 齐晓庆, 高春清. 螺旋相位光束轨道角动量态测量的实验研究.  , 2011, 60(1): 014208. doi: 10.7498/aps.60.014208
    [14] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究.  , 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [15] 刘曼, 陈小艺, 李海霞, 宋洪胜, 滕树云, 程传福. 利用干涉光场的相位涡旋测量拉盖尔-高斯光束的轨道角动量.  , 2010, 59(12): 8490-8498. doi: 10.7498/aps.59.8490
    [16] 吕宏, 柯熙政. 具有轨道角动量光束入射下的单球粒子散射研究.  , 2009, 58(12): 8302-8308. doi: 10.7498/aps.58.8302
    [17] 苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪. 基于光子轨道角动量的密码通信方案研究.  , 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
    [18] 高明伟, 高春清, 林志锋. 扭转对称光束的产生及其变换过程中的轨道角动量传递.  , 2007, 56(4): 2184-2190. doi: 10.7498/aps.56.2184
    [19] 董一鸣, 徐云飞, 张 璋, 林 强. 复杂像散椭圆光束的轨道角动量的实验研究.  , 2006, 55(11): 5755-5759. doi: 10.7498/aps.55.5755
    [20] 高明伟, 高春清, 何晓燕, 李家泽, 魏光辉. 利用具有轨道角动量的光束实现微粒的旋转.  , 2004, 53(2): 413-417. doi: 10.7498/aps.53.413
计量
  • 文章访问数:  650
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-14
  • 修回日期:  2025-01-08
  • 上网日期:  2025-01-17
  • 刊出日期:  2025-03-20

/

返回文章
返回
Baidu
map