搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复相互作用调制的两粒子系统中的局域化转变

郝佳鑫 徐志浩

引用本文:
Citation:

复相互作用调制的两粒子系统中的局域化转变

郝佳鑫, 徐志浩
cstr: 32037.14.aps.74.20241691

Localization transition in a two-particle system with complex interaction modulation

HAO Jiaxin, XU Zhihao
cstr: 32037.14.aps.74.20241691
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 研究了一维复相互作用调制的非厄米玻色子模型. 通过数值计算能谱的实-复转变、Shannon熵、标准参与比率与拓扑缠绕数发现, 当相互作用强度低于临界相互作用强度时, 系统的能谱全为实数, 处于扩展相, 且系统是拓扑平庸的; 而当相互作用强度超过临界相互作用强度时, 系统开始出现复能谱, 处于扩展态与局域态混合相, 且此时系统是拓扑非平庸的. 计算结果表明, 能谱的实-复转变点、扩展-局域的转变点与拓扑转变点相一致. 动力学演化结果可以验证系统的实-复转变与局域化转变. 最后, 提出利用二维光子波导阵列可以模拟这一复相互作用调制的一维玻色子模型. 此项工作将为非厄米两体系统的局域性质提供很好的参考.
    In this work, we investigate a one-dimensional two-boson system with complex interaction modulation, described by the Hamiltonian: $\hat{H}=-J\displaystyle\sum\nolimits_{j}\left(\hat{c}_j^\dagger\hat{c}_{j+1}+{\rm h.c}\right)+\sum\nolimits_{j}\frac{U}{2}{\rm e}^{2{\rm i}\pi\alpha j}\hat{n}_j\left(\hat{n}_j-1\right), $ where U is the interaction amplitude, and the modulation frequency $\alpha=(\sqrt{5}-1)$ is an irrational number. The interaction satisfies $U_{-j}=U^*_j$, which ensures that the system possesses party-time (PT) reversal symmetry. Using the exact diagonalization method, we numerically calculate the real-to-complex transition of the energy spectrum, Shannon entropy, the normalized participation ration, and the topological winding number. For small U, all eigenvalues are real. However, as U increases, eigenvalues corresponding to two particles occupying the same site become complex, marking a PT symmetry-breaking transition at $U=2$. This point signifies a real-to-complex transition in the spectrum. To characterize the localization properties of the system, we employ the Shannon entropy and the normalized participation ration (NPR). When $U<2$, all the eigenstates are extended, exhibiting high Shannon entropy and NPR values. Conversely, for $U>2$, states with complex eigenvalues show low Shannon entropy and significantly reduced NPR, indicating localization. Meanwhile, states with real eigenvalues remain extended in this regime. We further analyze the topological aspects of the system by using the winding number. A topological phase transition occurs at $U=2$, where the winding number changes from 0 to 1. This transition coincides with the onset of PT symmetry breaking and the localization transition. The dynamical evolution can be used to detect the localization properties and the real-to-complex transition, with the initial state being two bosons occupying the center site of the chain simultaneously. Finally, we propose an experimental realization by using a two-dimensional linear photonic waveguide array. The modulated interaction can be controlled by adjusting the real part and imaginary part of the refractive index of diagonal waveguide. To simulate this non-Hermitian two-body problem, we numerically calculate the density distribution of the wave packet in a two-dimensional plane, which indirectly reflects the propagation of light in a two-dimensional waveguide array. We hope that our work can deepen the understanding of the relation between interaction and disorder while arousing further interest in two-body systems and non-Hermitian localization.
      通信作者: 徐志浩, xuzhihao@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12375016, 12461160324)、山西省基础研究计划(批准号: 20210302123442)、北京凝聚态物理国家实验室(批准号: 2023BNLCMPKF001)和山西省“1331 工程”重点学科建设计划资助的课题.
      Corresponding author: XU Zhihao, xuzhihao@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12375016, 12461160324), the Fundamental Research Program of Shanxi Province, China (Grant No. 20210302123442), the Beijing National Laboratory for Condensed Matter Physics, China (Grant No. 2023BNLCMPKF001), and the Fund for Shanxi “1331Project” Key Subjects, China.
    [1]

    Anderson P W 1958 Phys. Rev. 109 1492Google Scholar

    [2]

    Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clément D, Sanchez-Palencia L, Bouyer P, Aspect A 2008 Nature 453 891Google Scholar

    [3]

    Roati G, D'Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M, Inguscio M 2008 Nature 453 895Google Scholar

    [4]

    Chabanov A A, Stoytchev M, Genack A Z 2000 Nature 404 850Google Scholar

    [5]

    Pradhan P, Sridhar S 2000 Phys. Rev. Lett. 85 2360Google Scholar

    [6]

    Lahini Y, Pugatch R, Pozzi F, Sorel M, Morandotti R, Davidson N, Silberberg Y 2009 Phys. Rev. Lett. 103 013901Google Scholar

    [7]

    Liu J H, Xu Z H 2023 Phys. Rev. B 108 184205Google Scholar

    [8]

    徐志浩, 皇甫宏丽, 张云波 2019 68 087201Google Scholar

    Xu Z H, Huang F H L, Zhang Y B 2019 Acta Phys. Sin. 68 087201Google Scholar

    [9]

    Bender Carl M, Stefan Boettcher 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [10]

    Heiss W D 2012 Phys. Rev. A 45 444016Google Scholar

    [11]

    Miri M A, Alù A 2019 Science 363 086803Google Scholar

    [12]

    Yao S, Song F, Wang Z 2018 Phys. Rev. Lett. 121 136802Google Scholar

    [13]

    Ou Z, Wang Y, Li L 2023 Phys. Rev. B 107 L161404Google Scholar

    [14]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [15]

    Borgnia D S, Kruchkov A J, Slager R J 2020 Phys. Rev. Lett. 124 056802Google Scholar

    [16]

    Feinberg J, Zee A 1999 Phys. Rev. E 59 6433Google Scholar

    [17]

    Kawabata K, Shiozaki K, Ueda M, Sato M 2019 Phys. Rev. X 9 041015Google Scholar

    [18]

    Hatano N, Nelson D R 1996 Phys. Rev. Lett. 77 570Google Scholar

    [19]

    Hatano N, Nelson D R 1997 Phys. Rev. B 56 8651Google Scholar

    [20]

    Hatano N, Nelson D R 1998 Phys. Rev. B 58 8384Google Scholar

    [21]

    Longhi, Stefano 2019 Phys. Rev. B 100 125157Google Scholar

    [22]

    Hamazaki R, Kawabata K, Ueda M 2019 Phys. Rev. Lett. 123 090603Google Scholar

    [23]

    Zhai L J, Yin S, Huang G Y 2020 Phys. Rev. B 102 064206Google Scholar

    [24]

    Tomita T, Nakajima S, Danshita I, Takasu Y, Takahashi Y 2017 Sci. Adv. 3 e1701513Google Scholar

    [25]

    Sponselee K, Freystatzky L, Abeln B, et al. 2018 Quantum Sci. Technol 4 0140027Google Scholar

    [26]

    Lee C H 2021 Phys. Rev. B 104 195102Google Scholar

    [27]

    Shen R, Lee C H 2022 Commun. Phys. 5 238Google Scholar

    [28]

    Gao M, Sheng C, Zhao Y, et al. 2024 Phys. Rev. B 110 094308Google Scholar

    [29]

    Corrielli G, Crespi A, Della Valle G, Longhi S, Osellame R 2013 Nat. Commun. 4 1555Google Scholar

    [30]

    XingY, Zhao X D, Lü Z, et al. 2021 Optics Express 29 40428Google Scholar

    [31]

    Wang Y C, Hu H P, Chen S 2016 Eur. Phys. J B 89 1Google Scholar

    [32]

    Zhou L W, Han W Q 2021 Chin. Phys. B 30 100308Google Scholar

    [33]

    Tian Q, Gu Y J, Zhou L W 2024 Phys. Rev. B 109 054204Google Scholar

  • 图 1  (a) $ U=1 $和(b) $ U=3 $时系统的能谱; (c)不同尺寸下能量虚部的绝对值的最大值随U的变化; (d) $ U=1 $ 时, 能量虚部最大值所对应本征态的两玻色子的坐标关联; (e) $ U=3 $时, 复能量环上两玻色子的坐标关联

    Fig. 1.  Complex energy spectrum for (a) $ U=1 $ and (b) $ U=3 $, respectively; (c) the maximum value of the absolute value of the imaginary part of energy as a function of U for different L; (d) the coordinate correlation of two bosons corresponding to the eigenstate with the maximum value of the imaginary part of energy for $ U=1 $; (e) the coordinate correlation of two bosons on the complex energy ring for $ U=3 $.

    图 2  (a) $ U=1 $和(b) $ U=3 $时系统的Shannon熵随能量本征值的变化; (c) $ \eta(E) $在不同的相互作用U下随能量本征值$ E_n $的实部的变化; (d) $ \eta(E_n) $在不同的相互作用U下随能量本征值$ E_n $的虚部的变化; 这里, $ L=89 $

    Fig. 2.  The Shannon entropy as the function of $ \mathrm{Re}(E_n) $ for (a) $ U=1 $ and (b) $ U=3 $, respectively; (c) $ \eta(E_n) $ as the function of $ \mathrm{Re}(E_n) $; (d) $ \eta(E_n) $ as the function of $ \mathrm{Im}(E_n) $. Here, $ L=89 $.

    图 3  缠绕数ω随相互作用强度U的变化

    Fig. 3.  Winding number ω as a function of U.

    图 4  (a) $ U=1 $和(b) $ U=3 $时坐标空间下两玻色子系统的密度演化; (c) $ U=3 $时, $ P\left(t\right) $随时间的演化; 这里, $ L=89 $

    Fig. 4.  Density evolution of a two-boson system in position space with (a) $ U=1 $ and (b) $ U=3 $, respectively; (c) the time evolution of $ P\left(t\right) $ for $ U=3 $. Here, $ L=89 $.

    图 5  (a) 二维光子波导阵列的示意图(每个圆圈代表一个波导. 橘黄色空圆圈和绿色圆圈分别标示具有不同折射率的波导, 从而有效地实现复调制的在位相互作用. 这个二维几何结构关于对角线对称); (b) $ U=1 $和(c) $ U=3 $时$ t=200 $时刻粒子在二维平面内的密度扩散

    Fig. 5.  (a) Schematic diagram of the two-dimensional linear photonic waveguide array. Each circle represents a waveguide. Orange-yellow hollow and green-colored circles label waveguides with different refractive indices, which can effectively control the complex modulated on-site interactions. This two-dimensional geometric structure is symmetric with respect to the diagonal. The density distributions of the wave packets in the 2D plane at time $ t = 200 $ for (b) $ U=1 $ and (c) $ U=3 $, respectively.

    Baidu
  • [1]

    Anderson P W 1958 Phys. Rev. 109 1492Google Scholar

    [2]

    Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clément D, Sanchez-Palencia L, Bouyer P, Aspect A 2008 Nature 453 891Google Scholar

    [3]

    Roati G, D'Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M, Inguscio M 2008 Nature 453 895Google Scholar

    [4]

    Chabanov A A, Stoytchev M, Genack A Z 2000 Nature 404 850Google Scholar

    [5]

    Pradhan P, Sridhar S 2000 Phys. Rev. Lett. 85 2360Google Scholar

    [6]

    Lahini Y, Pugatch R, Pozzi F, Sorel M, Morandotti R, Davidson N, Silberberg Y 2009 Phys. Rev. Lett. 103 013901Google Scholar

    [7]

    Liu J H, Xu Z H 2023 Phys. Rev. B 108 184205Google Scholar

    [8]

    徐志浩, 皇甫宏丽, 张云波 2019 68 087201Google Scholar

    Xu Z H, Huang F H L, Zhang Y B 2019 Acta Phys. Sin. 68 087201Google Scholar

    [9]

    Bender Carl M, Stefan Boettcher 1998 Phys. Rev. Lett. 80 5243Google Scholar

    [10]

    Heiss W D 2012 Phys. Rev. A 45 444016Google Scholar

    [11]

    Miri M A, Alù A 2019 Science 363 086803Google Scholar

    [12]

    Yao S, Song F, Wang Z 2018 Phys. Rev. Lett. 121 136802Google Scholar

    [13]

    Ou Z, Wang Y, Li L 2023 Phys. Rev. B 107 L161404Google Scholar

    [14]

    Yao S, Wang Z 2018 Phys. Rev. Lett. 121 086803Google Scholar

    [15]

    Borgnia D S, Kruchkov A J, Slager R J 2020 Phys. Rev. Lett. 124 056802Google Scholar

    [16]

    Feinberg J, Zee A 1999 Phys. Rev. E 59 6433Google Scholar

    [17]

    Kawabata K, Shiozaki K, Ueda M, Sato M 2019 Phys. Rev. X 9 041015Google Scholar

    [18]

    Hatano N, Nelson D R 1996 Phys. Rev. Lett. 77 570Google Scholar

    [19]

    Hatano N, Nelson D R 1997 Phys. Rev. B 56 8651Google Scholar

    [20]

    Hatano N, Nelson D R 1998 Phys. Rev. B 58 8384Google Scholar

    [21]

    Longhi, Stefano 2019 Phys. Rev. B 100 125157Google Scholar

    [22]

    Hamazaki R, Kawabata K, Ueda M 2019 Phys. Rev. Lett. 123 090603Google Scholar

    [23]

    Zhai L J, Yin S, Huang G Y 2020 Phys. Rev. B 102 064206Google Scholar

    [24]

    Tomita T, Nakajima S, Danshita I, Takasu Y, Takahashi Y 2017 Sci. Adv. 3 e1701513Google Scholar

    [25]

    Sponselee K, Freystatzky L, Abeln B, et al. 2018 Quantum Sci. Technol 4 0140027Google Scholar

    [26]

    Lee C H 2021 Phys. Rev. B 104 195102Google Scholar

    [27]

    Shen R, Lee C H 2022 Commun. Phys. 5 238Google Scholar

    [28]

    Gao M, Sheng C, Zhao Y, et al. 2024 Phys. Rev. B 110 094308Google Scholar

    [29]

    Corrielli G, Crespi A, Della Valle G, Longhi S, Osellame R 2013 Nat. Commun. 4 1555Google Scholar

    [30]

    XingY, Zhao X D, Lü Z, et al. 2021 Optics Express 29 40428Google Scholar

    [31]

    Wang Y C, Hu H P, Chen S 2016 Eur. Phys. J B 89 1Google Scholar

    [32]

    Zhou L W, Han W Q 2021 Chin. Phys. B 30 100308Google Scholar

    [33]

    Tian Q, Gu Y J, Zhou L W 2024 Phys. Rev. B 109 054204Google Scholar

  • [1] 王宇佳, 徐志浩. 周期驱动非互易Aubry-André模型中的多重分形态和迁移率边.  , 2025, 74(9): . doi: 10.7498/aps.74.20241633
    [2] 郭刚峰, 包茜茜, 谭磊, 刘伍明. 非厄米准周期系统中的二次局域体态和局域-扩展的边缘态.  , 2025, 74(1): 010301. doi: 10.7498/aps.74.20240933
    [3] 陆展鹏, 徐志浩. 具有平带的一维十字型晶格中重返局域化现象.  , 2024, 73(3): 037202. doi: 10.7498/aps.73.20231393
    [4] 刘辉, 陆展鹏, 徐志浩. 一维非厄米十字晶格中的退局域-局域转变.  , 2024, 73(13): 137201. doi: 10.7498/aps.73.20240510
    [5] 古燕, 陆展鹏. 非厄米耦合链中的局域化转变.  , 2024, 73(19): 197101. doi: 10.7498/aps.73.20240976
    [6] 刘敬鹄, 徐志浩. 随机两体耗散诱导的非厄米多体局域化.  , 2024, 73(7): 077202. doi: 10.7498/aps.73.20231987
    [7] 隋文杰, 张玉, 张紫瑞, 王小龙, 张洪方, 史强, 杨冰. 拓扑自旋光子晶体中螺旋边界态单向传输调控研究.  , 2022, 71(19): 194101. doi: 10.7498/aps.71.20220353
    [8] 吴瑾, 陆展鹏, 徐志浩, 郭利平. 由超辐射引起的迁移率边和重返局域化.  , 2022, 71(11): 113702. doi: 10.7498/aps.71.20212246
    [9] 潘磊. 非厄米线性响应理论及其应用.  , 2022, 71(17): 170305. doi: 10.7498/aps.71.20220862
    [10] 唐原江, 梁超, 刘永椿. 宇称-时间对称与反对称研究进展.  , 2022, 71(17): 171101. doi: 10.7498/aps.71.20221323
    [11] 曲登科, 范毅, 薛鹏. 高维宇称-时间对称系统中的信息恢复与临界性.  , 2022, 0(0): . doi: 10.7498/aps.71.20220511
    [12] 曲登科, 范毅, 薛鹏. 高维宇称-时间对称系统中的信息恢复与临界性.  , 2022, 71(13): 130301. doi: 10.7498/aps.70.20220511
    [13] 张高见, 王逸璞. 腔光子-自旋波量子耦合系统中各向异性奇异点的实验研究.  , 2020, 69(4): 047103. doi: 10.7498/aps.69.20191632
    [14] 吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展.  , 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [15] 王子, 张丹妹, 任捷. 声子系统中弹性波与热输运的拓扑与非互易现象.  , 2019, 68(22): 220302. doi: 10.7498/aps.68.20191463
    [16] 孔令尧. 磁斯格明子拓扑特性及其动力学微磁学模拟研究进展.  , 2018, 67(13): 137506. doi: 10.7498/aps.67.20180235
    [17] 贾子源, 杨玉婷, 季立宇, 杭志宏. 类石墨烯复杂晶胞光子晶体中的确定性界面态.  , 2017, 66(22): 227802. doi: 10.7498/aps.66.227802
    [18] 孙晓晨, 何程, 卢明辉, 陈延峰. 人工带隙材料的拓扑性质.  , 2017, 66(22): 224203. doi: 10.7498/aps.66.224203
    [19] 陈泽国, 吴莹. 声子晶体中的多重拓扑相.  , 2017, 66(22): 227804. doi: 10.7498/aps.66.227804
    [20] 丁锐, 金亚秋, 小仓久直. 二维随机介质中柱面波传播及其局域性的随机泛函分析.  , 2010, 59(6): 3674-3685. doi: 10.7498/aps.59.3674
计量
  • 文章访问数:  446
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-06
  • 修回日期:  2025-01-18
  • 上网日期:  2025-01-24
  • 刊出日期:  2025-03-20

/

返回文章
返回
Baidu
map