-
基于亚甲基蓝(methylene Blue, MB)-银纳米腔体系的双拉比分裂实验, 建立了MB分子团簇和双金属纳米粒子结构模型, 在密度矩阵理论框架下, 应用偶极近似方法, 计算了MB分子团簇与双金属纳米粒子形成的杂化态的耦合动力学过程, 研究了多激子态-等离激元相互作用下的多模耦合效应, 得到了与实验定性一致的结果. 通过短脉冲激发, 在更大的激发频域下研究激子态和等离激元的耦合态. 探讨了激子退相干速率和分子间距离对耦合过程的影响、分子与等离激元的耦合强度随激子退相干时间缩短而增强的现象, 由于团簇内离域激子与等离激元耦合相互作用, 复合体系内可以产生更多杂化能级, 使得光学响应峰发生相应变化. 通过对分子团簇与金属纳米结构的多模耦合的机理研究, 为设计高效光捕获和转换材料提供了理论依据和思路.Methylene blue (MB), as an organic dye, exhibits rich photophysical properties when interacting with metal nanoparticles. Based on the double Rabi splitting experiment of MB molecular clusters and dual metal nanoparticles in a silver nanocavity, a cluster model composed of MB molecular monomers and dimers is developed and placed in a nanocavity environment consisting of two metal nanoparticles in this work. The density matrix theory framework combined with dipole approximation is used to calculate the coupling dynamics of the hybrid state formed between MB molecular clusters and dual metal nanoparticles. The semi-classical model is used to deal with the coupling of external fieldsand molecules and plasmons, and the multi-mode coupling effect caused by the interaction between multi-exciton states and plasmons is discussed. The results are qualitatively consistent with experimental results. The research results show that under the excitation of strong short pulse fields, single-mode coupling occurs mainly between MB monomers and nanocavities, forming new hybrid states. When the molecular cluster is composed of a mixture of monomers and dimers, it forms a multi-mode coupling state with the nanocavity. As the pulse width decreases, more exciton states and plasmon states are activated, which not only enhances the coupling effect but also further expands the excitation range of excitons. The effects of exciton decoherence rate and intermolecular distance on the coupling process are explored. The results show that the coupling strength increases with the exciton decoherence rate decreasing, that is, the longer the exciton decoherence time, the greater the coupling strength will be. This is because a longer decoherence time means that the exciton state has a longer lifetime and can more effectively couple with the plasmonic state. Meanwhile, molecular spacing is also an important factor affecting coupling behaviors. When the intermolecular distance is small, the coupling between excitons is enhanced, which leads to an increase of the splitting of hybrid energy levels, thereby promoting more excitons to couple with plasmons. The study of the multi-mode coupling mechanism between MB molecular clusters and dual metal nanoparticle structures reveals that under the interaction between multi-exciton states and plasmons, more hybrid energy levels can be generated in the composite system, leading the optical response peak to change accordingly. This work not only deepens our understanding of the coupling between molecules and plasmons but also provides theoretical insights for designing efficient light harvesting and conversion materials.
-
Keywords:
- methylene blue molecular clusters /
- metal nanoparticles /
- optical response /
- multimode coupling
[1] Jose D, Matthiesen J E, Parsons C, Sorensen C M, Klabunde K J 2012 J. Phys. Chem. Lett. 3 885
Google Scholar
[2] Jiang X X, Dai J G, Wang H B, Geng Y H, Yan D H 2007 Chem. Phys. Lett. 446 329
Google Scholar
[3] Winder C, Andreev A, Sitter H, Matt G, Sariciftci N S, Meissner D 2003 Synthetic Met. 139 573
Google Scholar
[4] Mousavizadegan M, Shalileh F, Mostajabodavati S, Mohammadi J, Hosseini M 2024 TRAC 177 117794
Google Scholar
[5] Liu J W, Wu D, Wu Y N, Shi Y H, Liu W Q, Sun Z W, Li G L 2024 TRAC 177 117793
Google Scholar
[6] Mohan B, Sasaki Y, Minami T 2024 Anal. Chim. Acta 1313 342741
Google Scholar
[7] Sasikala V, Chitra K 2018 J. Opt. 47 307
Google Scholar
[8] Bratati D, Resmi M, Elaganuru B, Ramachandrarao Y 2023 Proc. SPIE 12638 126380Y
Google Scholar
[9] Xiong C X, Li H J, Xu H, Zhao M Z, Zhang B H, Liu C, Wu K 2019 Opt. Express 27 17718
Google Scholar
[10] 赵珂, 刘朋伟, 韩广超 2011 60 124216
Google Scholar
Zhao K, Liu P W, Han G C 2011 Acta Phys. Sin. 60 124216
Google Scholar
[11] Gil E S, Giustini A, Accomasso D, Granucci G 2024 J. Chem. Theory Comput. 20 8437
Google Scholar
[12] Zhang Y X, Wang Y H 2017 RSC Adv. 7 45129
Google Scholar
[13] Chang K N, Gao J, Wang L X 2016 Org. Electron. 32 83
Google Scholar
[14] Wang L X, Volkhard M 2017 J. Phys. B: At. Mol. Opt. 50 154003
Google Scholar
[15] Zhang P C, Jin W J, Liang W Z 2018 J. Phys. Chem. C 122 10545
Google Scholar
[16] Sun J, Ding Z L, Yu Y Q, Liang W Z 2020 J. Chem. Phys. 152 224708
Google Scholar
[17] 范旭阳, 陈瀚超, 王鹿霞 2021 70 227302
Google Scholar
Fan X Y, Chen H C, Wang L X 2021 Acta Phys. Sin. 70 227302
Google Scholar
[18] Veljko J, Tomáš M 2020 J. Chem. Phys. 153 244122
Google Scholar
[19] Huang X K, Liang W Z 2024 J. Phys. Chem. Lett. 15 6592
Google Scholar
[20] Dean J C, Oblinsky D G, Rafiq S, Scholes G D 2016 J. Phys. Chem. B 120 440
Google Scholar
[21] Han X B, Li F, He Z C, Liu Y H, Hu H T, Wang K, Lu P X 2022 Nanophotonics 11 603
Google Scholar
[22] Garrahan J P 2018 Physica A 504 130
Google Scholar
[23] Fan X Y, Wei A, Klamroth T, Zhang Y, Gao K, Wang L X 2023 Phys. Rev. B 107 134301
Google Scholar
[24] Chernikov A, Ruppert C, Hill H M, Rigosi A F, Heinz T F 2015 Nat. Photonics 9 466
Google Scholar
[25] 高静, 常凯楠, 王鹿霞 2015 64 147303
Google Scholar
Gao J, Chang K N, Wang L X 2015 Acta Phys. Sin. 64 147303
Google Scholar
[26] Tafulo P, Queirós R, González-Aguilar G 2009 Spectrochim. Acta A 73 295
Google Scholar
-
图 1 MB分子单体、H型二聚体的分子结构图及其能级图(横向箭头表示偶极的方向, S0表示单体或二聚体的基态, S1表示单体的第1激发态, S+和S–分别表示二聚体的两个劈裂态)
Fig. 1. Molecular structure diagram and energy level diagram of MB monomer and H-dimer (The horizontal arrow indicates the direction of the dipole, S0 represents the ground state of the monomer or dimer, S1 represents the first excited state of the monomer, and S+ and S– represent the two splitting states of the dimer, respectively).
图 3 (a) 不同数值比例的MB分子团簇的稳态激发态布居$ P_{{\text{tot}}}^{{\text{(ss)}}} $随波长的变化; (b)不同数值比例的MB分子团簇吸收谱, 蓝色箭头表示染料浓度增大[21]
Fig. 3. (a) Steady-state excited state population of MB molecular clusters with different numerical ratios as a function of wavelength; (b) absorption spectra of MB clusters at different numerical ratios, with blue arrows indicating increased dye concentrations[21]
图 4 (a) 不同间距的双金属纳米粒子与MB单体所组成的复合结构的稳态激发态布居$ P_{{\text{tot}}}^{{\text{(ss)}}} $随波长的变化; (b) 不同尺寸的银纳米立方体与低浓度MB溶液所组成的杂化纳米结构的散射光谱[21]
Fig. 4. (a) Steady-state excited state population of composite structures composed of dual metal nanoparticles with different spacing and MB monomers as a function of wavelength; (b) scattering spectra of hybrid nanostructures composed of silver nanocubes of different sizes and low-concentration MB solution[21].
图 5 不同间距的MB-双金属复合体的稳态激发态布居$ P_{{\text{tot}}}^{{\text{(ss)}}} $随波长的变化(绿色和橙色的竖线分别表示610 nm和663 nm处光学响应峰)
Fig. 5. Steady-state excited state population of MB and dual metal nanoparticles complex with different spacing varies with wavelength (The green and orange vertical lines represent the optical response peaks at 610 nm and 663 nm, respectively).
图 6 MB单体与双金属纳米粒子所组成的复合结构的分子激发态布居$ {P_m} $随时间的演变 (a) $ \hbar {\omega _0} = 1.82\; {{\mathrm{eV}}} $; (b) $ \hbar {\omega _0} = 1.93 \; {{\mathrm{eV}}} $
Fig. 6. Evolution of molecular excited state population over time in the composite structure composed of MB monomer and dual metal nanoparticles: (a) $ \hbar {\omega _0} = 1.82 \; {{\mathrm{eV}}} $; (b) $ \hbar {\omega _0} = 1.93 \; {{\mathrm{eV}}} $.
图 7 MB-双金属复合体的分子激发态布居$ {P_m} $和$ {P_d} $随时间的演变, 其中(a) $ \hbar {\omega _0} = 1.82\; {{\mathrm{eV}}} $, (b) $ \hbar {\omega _0} = 1.93 \; {{\mathrm{eV}}} $, (c) $ \hbar {\omega _0} = 2.05\; {{\mathrm{eV}}} $; (d)复合体系的杂化能级示意图
Fig. 7. Evolution of molecular excited state population of MB and dual metal nanoparticles complex over time: (a) $ \hbar {\omega _0} = 1.82\; {{\mathrm{eV}}} $; (b) $ \hbar {\omega _0} = 1.93\; {{\mathrm{eV}}} $; (c) $ \hbar {\omega _0} = 2.05\; {{\mathrm{eV}}}$. (d) Schematic diagram of hybrid energy levels in composite systems.
图 8 (a)不同脉冲宽度下, MB单体与双金属纳米粒子所组成的复合结构的稳态激发态布居$ P_{{\text{tot}}}^{{\text{(ss)}}} $随波长的变化; (b)不同脉冲宽度下, MB-双金属复合体系的稳态激发态布居$ P_{{\text{tot}}}^{{\text{(ss)}}} $随波长的变化
Fig. 8. (a) Steady-state excited state population of the composite structure composed of MB monomer and dual metal nanoparticles as a function of wavelength under different pulse widths; (b) the steady-state excited state population of MB and dual metal nanoparticles complex as a function of wavelength under different pulse widths.
图 9 (a)不同激子退相干速率下, MB单体与双金属纳米粒子所组成复合结构的稳态激发态布居$ P_{{\text{tot}}}^{{\text{(ss)}}} $随光子能量的变化; (b)不同激子退相干速率下, MB-双金属复合体的稳态激发态布居$ P_{{\text{tot}}}^{{\text{(ss)}}} $随光子能量的变化
Fig. 9. (a) Steady-state excited state population of the composite structure composed of MB monomer and dual metal nanoparticles as a function of photon energy at different exciton decoherence rates; (b) the steady-state excited state population of MB and dual metal nanoparticles complex as a function of photon energy at different exciton decoherence rates.
图 10 (a)不同分子间距下, MB单体与双金属纳米粒子所组成的复合结构的稳态激发态布居$ P_{{\text{tot}}}^{{\text{(ss)}}} $随波长的变化; (b)不同分子间距下, MB-双金属复合体的稳态激发态布居$ P_{{\text{tot}}}^{{\text{(ss)}}} $随波长的变化
Fig. 10. (a) Steady-state excited state population of the composite structure composed of MB monomer and dual metal nanoparticles as a function of wavelength at different molecular spacings; (b) the steady-state excited state population of MB and dual metal nanoparticles complex as a function of wavelength at different molecular spacings.
表 1 激子-等离激元耦合研究参数设置
Table 1. Parameter settings for exciton plasmon coupling research.
参数名称 数值 $ {N_{{{\mathrm{mon}}}}} $ 12, 8, 6 $ {N_{{{\mathrm{dimer}}}}} $ 0, 4, 6 $ {E_{{{\mathrm{mon}}}}} $/eV 1.87[21] $ {E_{{{\mathrm{dimer}}}}} $/eV 2.03[21] $ {E_{{{\mathrm{pl}}}}} $/eV 2.60 $ {d_{{{\mathrm{mon}}}}} $/D 3.5 $ {d_{{{\mathrm{dimer}}}}} $/D 3.8 $ {d_{{{\mathrm{pl}}}}} $/D 2925[25] $ \gamma $/ meV 3, 5, 10, 15, 20 $ {\gamma _{{{\mathrm{pl}}}}} $/ meV 57 $ {E_0} $/(V·m–1) 105—107 $ {\tau _{\text{p}}} $/fs 10, 20, 50 -
[1] Jose D, Matthiesen J E, Parsons C, Sorensen C M, Klabunde K J 2012 J. Phys. Chem. Lett. 3 885
Google Scholar
[2] Jiang X X, Dai J G, Wang H B, Geng Y H, Yan D H 2007 Chem. Phys. Lett. 446 329
Google Scholar
[3] Winder C, Andreev A, Sitter H, Matt G, Sariciftci N S, Meissner D 2003 Synthetic Met. 139 573
Google Scholar
[4] Mousavizadegan M, Shalileh F, Mostajabodavati S, Mohammadi J, Hosseini M 2024 TRAC 177 117794
Google Scholar
[5] Liu J W, Wu D, Wu Y N, Shi Y H, Liu W Q, Sun Z W, Li G L 2024 TRAC 177 117793
Google Scholar
[6] Mohan B, Sasaki Y, Minami T 2024 Anal. Chim. Acta 1313 342741
Google Scholar
[7] Sasikala V, Chitra K 2018 J. Opt. 47 307
Google Scholar
[8] Bratati D, Resmi M, Elaganuru B, Ramachandrarao Y 2023 Proc. SPIE 12638 126380Y
Google Scholar
[9] Xiong C X, Li H J, Xu H, Zhao M Z, Zhang B H, Liu C, Wu K 2019 Opt. Express 27 17718
Google Scholar
[10] 赵珂, 刘朋伟, 韩广超 2011 60 124216
Google Scholar
Zhao K, Liu P W, Han G C 2011 Acta Phys. Sin. 60 124216
Google Scholar
[11] Gil E S, Giustini A, Accomasso D, Granucci G 2024 J. Chem. Theory Comput. 20 8437
Google Scholar
[12] Zhang Y X, Wang Y H 2017 RSC Adv. 7 45129
Google Scholar
[13] Chang K N, Gao J, Wang L X 2016 Org. Electron. 32 83
Google Scholar
[14] Wang L X, Volkhard M 2017 J. Phys. B: At. Mol. Opt. 50 154003
Google Scholar
[15] Zhang P C, Jin W J, Liang W Z 2018 J. Phys. Chem. C 122 10545
Google Scholar
[16] Sun J, Ding Z L, Yu Y Q, Liang W Z 2020 J. Chem. Phys. 152 224708
Google Scholar
[17] 范旭阳, 陈瀚超, 王鹿霞 2021 70 227302
Google Scholar
Fan X Y, Chen H C, Wang L X 2021 Acta Phys. Sin. 70 227302
Google Scholar
[18] Veljko J, Tomáš M 2020 J. Chem. Phys. 153 244122
Google Scholar
[19] Huang X K, Liang W Z 2024 J. Phys. Chem. Lett. 15 6592
Google Scholar
[20] Dean J C, Oblinsky D G, Rafiq S, Scholes G D 2016 J. Phys. Chem. B 120 440
Google Scholar
[21] Han X B, Li F, He Z C, Liu Y H, Hu H T, Wang K, Lu P X 2022 Nanophotonics 11 603
Google Scholar
[22] Garrahan J P 2018 Physica A 504 130
Google Scholar
[23] Fan X Y, Wei A, Klamroth T, Zhang Y, Gao K, Wang L X 2023 Phys. Rev. B 107 134301
Google Scholar
[24] Chernikov A, Ruppert C, Hill H M, Rigosi A F, Heinz T F 2015 Nat. Photonics 9 466
Google Scholar
[25] 高静, 常凯楠, 王鹿霞 2015 64 147303
Google Scholar
Gao J, Chang K N, Wang L X 2015 Acta Phys. Sin. 64 147303
Google Scholar
[26] Tafulo P, Queirós R, González-Aguilar G 2009 Spectrochim. Acta A 73 295
Google Scholar
计量
- 文章访问数: 402
- PDF下载量: 3
- 被引次数: 0