搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于法布里-珀罗腔的可调谐连续域束缚态及应用

任洋 李振雄 张磊 崔巍 吴雄雄 霍亚杉 何智慧

引用本文:
Citation:

基于法布里-珀罗腔的可调谐连续域束缚态及应用

任洋, 李振雄, 张磊, 崔巍, 吴雄雄, 霍亚杉, 何智慧

Tunable continuous domain bound states based on Fabry-Perot cavities and their applications

Ren Yang, Li Zhen-Xiong, Zhang Lei, Cui Wei, Wu Xiong-Xiong, Huo Ya-Shan, He Zhi-Hui
PDF
HTML
导出引用
  • 优异的光学吸收器一直具备着高品质因数和完美吸收的特性, 然而, 这类吸收器通常会受到传统表面等离子体共振带来的欧姆损耗, 制约其在实际应用中的吸收性能. 本文提出了一种基于法布里-珀罗腔的可调谐连续域束缚态(bound state in the continuum, BIC), 通过调整模型的参数, 可将BIC可以转变为准BIC, 在连续谱中实现了100%的完美吸收. 在本文中, 采用干涉理论探究了影响完美吸收的因素, 用耦合模理论和阻抗匹配理论对准BIC进行理论计算, 采用电场和磁场理论解释了吸收器完美吸收的物理机制. 与传统吸收器相比, 该吸收器具有优异的结构参数鲁棒性和广泛的BIC调控范围. 更重要的是, 该吸收器具有出色的传感性能, 其最大灵敏度可达34 nm/RIU, 最大品质因数为9.5. 最后, 该吸收器还实现了双频的开光性能, 其中双频开关的最大调制深度和最小插入损耗分别为99.4%和0.0004 dB. 这些研究结果在光子学、光通信、传感器技术等领域具有重要意义.
    Excellent optical absorbers are always characterized by high quality factors and perfect absorption; however, these absorbers usually encounter the ohmic losses due to traditional surface plasmon resonance, which limits their absorption performance in practical applications. To address the problem, a tunable bound state in the continuum (BIC) based on Fabry-Perot cavity is proposed in this work. Figure (a) shows the structural model of the designed Fabry-Perot cavity absorber, which consists of Ag as a substrate, a layer of the dielectric material Al2O3 above the Ag substrate, and a high-refractive-index grating as the top dielectric layer Si ridge. By adjusting the thickness parameter d of Al2O3, the transformation of BIC into q-BIC is achieved. Specifically, when d is increased from 273 nm to 298 nm, the BIC can be transformed into quasi-BIC, and the perfect absorption of the absorber in the continuum spectrum can be increased to 100%. In this work, the factors affecting the perfect absorption are explored by using the interference theory; theoretical calculations of the quasi-BIC are carried out by using the coupled mode theory and impedance matching theory; the physical mechanism of the BIC is explained by using the electric and magnetic field theory. The BIC is caused by the electric and magnetic dipole modes as well as the mirror image of the base Ag, which causes the interferential phase cancellation effect. Compared with the conventional absorber, the proposed absorber has excellent structural parameter robustness and a wide range of BIC modulation. More importantly, the absorber has excellent sensing performance with a maximum sensitivity of up to 34 nm/RIU and a maximum quality factor of 9.5. Last but not least, the absorber also achieves dual-frequency open-light performance, the maximum modulation depth and the minimum insertion loss of the dual-frequency switch reach 99.4% and 0.0004 dB, respectively. These findings have significant implications in the fields of photonics, optical communication, and sensor technology.
      通信作者: 何智慧, hezh@yau.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62065017, 12004327, 52303352)、陕西省重点研发计划(批准号: 2024GX-YBXM-097)、延安大学博士创业基金(批准号: YAU202313801)、中国博士后科学基金(批准号: 2020M680317)和陕西省自然科学基金(批准号: 2021JM-414)资助的课题.
      Corresponding author: He Zhi-Hui, hezh@yau.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62065017, 12004327, 52303352), the Key Research and Development Program of Shaanxi Province, China (Grant No. 2024GX-YBXM-097), the Startup Foundation for Doctors of Yan’an University, China (Grant No. YAU202313801), the China Postdoctoral Science Foundation (Grant No. 2020M680317), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2021JM-414).
    [1]

    Ali A, Mitra A, Aïssa B 2022 Nanomaterials 12 1027Google Scholar

    [2]

    Chen Y, Ai B, Wong Z J 2020 Nano Converg. 7 18Google Scholar

    [3]

    Martinez F, Maldovan M 2022 Mater. Today Phys. 27 100819Google Scholar

    [4]

    Padilla W J, Fan K 2022 Metamaterial Eectromagnetic Wave Absorbers (Springer Nature) p12

    [5]

    Nie G, Shi Q, Zhu Z, Shi J 2014 Appl. Phys. Lett. 105 201909Google Scholar

    [6]

    Luo X, Liu Z, Wang L, Liu J, Lin Q 2018 Appl. Phys. Express 11 105102Google Scholar

    [7]

    Lavchiev V M, Jakoby B, Hedenig U, Grille T, Irsigler P, Ritchie G, Kirkbride J, Lendl B SENSORS 2014 IEEE, Valencia, November 2–5, 2014 p645

    [8]

    Ren Y, Cui W, Yang Z, Xiong B, Zhang L, Li Z, Lu S, Huo Y, Wu X, Li G 2024 Opt. Mater. 149 115073Google Scholar

    [9]

    Jiang H, Sabarinathan J, Manifar T, Mittler S 2009 J. Lightwave Technol. 27 2264Google Scholar

    [10]

    Tarumaraja K A, Menon P S, Said F A, Jamil N A, Ehsan A A, Shaari S, Majlis B Y, Jalar A 2016 IEEE International Conference on Semiconductor Electronicsp, Kuala Lumpur Malaysia, August 17–19, 2016 p79

    [11]

    Lin H, Lin K T, Yang T, Jia B 2021 Adv. Mater. Technol. 6 2000963Google Scholar

    [12]

    Boardman A D, Grimalsky V V, Kivshar Y S, Koshevaya S V, Lapine M, Litchinitser N M, Malnev V N, Noginov M, Rapoport Y G, Shalaev V M 2011 Laser Photonics Rev. 5 287Google Scholar

    [13]

    Kowerdziej R, Ferraro A, Zografopoulos D C, Caputo R 2022 Adv. Opt. Mater. 10 2200750Google Scholar

    [14]

    Jin R, Huang L J, Zhou C B, Guo J, Fu Z, Chen J, Wang J, Li X, Yu F, Chen J 2023 Nano Lett. 23 9105Google Scholar

    [15]

    Zhou C B, Huang L J, Jin R, Xu L, Li G H, Rahmani M, Chen X S, Lu W, Miroshnichenko A E 2023 Laser Photonics Rev. 17 2200564Google Scholar

    [16]

    Koshelev K, Bogdanov A, Kivshar Y 2019 Sci. Bull. 64 836Google Scholar

    [17]

    Masoudian Saadabad R, Huang L J, Miroshnichenko A E 2021 Phys. Rev. B 104 235405Google Scholar

    [18]

    Yuan L, Lu Y Y 2017 Opt. Lett. 42 4490Google Scholar

    [19]

    Jordan P, Von Neumann J, Wigner E P 1993 The Collected Works of Eugene Paul Wigner: Part A: The Scientific Papers (Springer Berlin Heidelberg) p298

    [20]

    Xie P, Liang Z C, Jia T T, Li D M, Chen Y X, Chang P J, Zhang H, Wang W 2021 Phys. Rev. B 104 125446Google Scholar

    [21]

    Huang L J, Jin R, Zhou C B, Li G H, Xu L, Overvig A, Deng F, Chen X H, Lu W, Alù A, Miroshnichenko A E 2023 Nat. Commun. 14 3433Google Scholar

    [22]

    Wan S, Qin C H, Wang K D, Li Y C, Guan C Y, Lv B, Li W J, Shi J H 2022 J. Appl. Phys. 131 213104Google Scholar

    [23]

    Wu F, Qi X, Qin M B, Luo M, Long Y, Wu J J, Sun Y, Jiang H T, Liu T T, Xiao S Y, Chen H 2024 Phys. Rev. B 109 085436Google Scholar

    [24]

    Wu F, Wu J J, Guo Z W, Jiang H T, Sun Y, Li Y H, Ren J, Chen H 2019 Phys. Rev. Appl. 12 014028Google Scholar

    [25]

    Gao E D, Li H J, Liu C, Ruan B X, Li M, Zhang B H, Zhang Z 2022 Phys. Chem. Chem. Phys. 24 20125Google Scholar

    [26]

    Moriasa K, Hasebe H, Sugimoto H, Fujii M 2023 J. Appl. Phys. 133 173102Google Scholar

    [27]

    Wang Y X, Cui W, Ren Y, Li Z X, Zhang L, Lei W L, Huo Y S, He Z H 2024 Infrared Phys. Technol. 136 105091Google Scholar

    [28]

    Ki Y G, Jeon H W, Kim S J 2024 Electronics 13 753Google Scholar

    [29]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [30]

    Schinke C, Christian Peest P, Schmidt J, Brendel R, Bothe K, Vogt M R, Kröger I, Winter S, Schirmacher A, Lim S 2015 Aip Adv. 5 067168Google Scholar

    [31]

    Malitson I H, Dodge M J 1972 J. Opt. Soc. Am 62 1405

    [32]

    Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017Google Scholar

    [33]

    Xie Y D, Liu Z M, Zhou F Q, Luo X, Cheng Z Q, Yang R H, Cheng J, Yang G X 2023 Diamond Relat. Mater. 137 110100Google Scholar

    [34]

    Qing Y M, Ma H F, Cui T J 2018 Opt. Express 26 32442Google Scholar

    [35]

    Li H J, Wang L L, Zhai X 2016 Sci. Rep. 6 36651Google Scholar

    [36]

    Smith D, Vier D, Koschny T, Soukoulis C 2005 Phys. Rev. E 71 036617Google Scholar

    [37]

    Wang Y X, Cui W, Wang X J, Lei W L, Li L Q, Cao X L, He H, He Z H 2022 Vacuum 206 111515Google Scholar

    [38]

    Gao E D, Cao G T, Deng Y, Li H J, Chen X S, Li G H 2024 Opt. Laser Technol. 168 109840Google Scholar

    [39]

    Li M, Li H J, Xu H, Xiong C X, Zhao M Z, Liu C, Ruan B X, Zhang B H, Wu K 2020 New J. Phys. 22 103030Google Scholar

    [40]

    Kim M, Kim S, Kim S 2022 Sci. Rep. 12 1445Google Scholar

    [41]

    Gao E D, Jin R, Fu Z C, Cao G T, Deng Y, Chen J, Li G H, Chen X S, Li H J 2023 Photonics Res. 11 456Google Scholar

  • 图 1  (a)基于连续谱中束缚态实现的可谐调完美吸收器的结构图; (b)吸收器的单元结构图; (c)吸收器单元结构的侧视图

    Fig. 1.  (a) Structural diagram of a harmonic perfect absorber based on the realization of bound states in the continuous spectrum; (b) diagram of the unit structure of the absorber; (c) side view of the unit structure of the absorber.

    图 2  非对称FP谐振腔的干涉原理图

    Fig. 2.  Interference schematic of an asymmetric FP resonant cavity.

    图 3  (a) Si/Al2O3/Ag超材料吸收器的吸收光谱和透射光谱; (b)参数d变化对吸收光谱的影响; (c) BIC和q-BIC与参数d的关系; (d) BIC的磁场分布; (e)BIC的电场分布

    Fig. 3.  (a) Absorption and transmission spectra of Si/Al2O3/Ag metamaterial absorber; (b) effect of parameter d variation on the absorption spectra; (c) BIC and q-BIC versus parameter d; (d) magnetic field distribution of BIC; (e) electric field distribution of BIC.

    图 4  (a) CMT计算和FDTD仿真的吸收光谱; (b)吸收光谱的有效阻抗Zr的虚部和实部

    Fig. 4.  (a) Absorption spectra for CMT calculation and FDTD simulation; (b) absorption spectra of the effective impedance of Zr in the imaginary and real parts.

    图 5  (a) Si/Al2O3/Ag超材料在不同d下的吸收光谱和磁场分布; (b) Si/Al2O3/Ag超材料在不同w下的吸收光谱和磁场分布

    Fig. 5.  (a) Absorption spectra and magnetic field distribution of Si/Al2O3/Ag metamaterials at different d; (b) absorption spectra and magnetic field distribution of Si/Al2O3/Ag metamaterials at different w.

    图 6  (a) 4种不同结构吸收器的吸收光谱; (b)—(d) 4种不同结构吸收器的结构图

    Fig. 6.  (a) Absorption spectra of four different structural absorbers; (b)–(d) structural diagrams of four different structural absorbers.

    图 7  (a)参数w随波长变化的吸收光谱; (b)参数h随波长变化的吸收光谱; (d)参数p随波长变化的吸收光谱

    Fig. 7.  (a) Absorption spectra of parameter w varying with wavelength; (b) absorption spectra of parameter h as a function of wavelength; (c) absorption spectra of parameter p as a function of wavelength.

    图 8  (a)吸收器Δw的单元结构图; (b)吸收器Δh的单元结构图; (c)吸收器Δy的单元结构图; (d)参数Δw随波长变化的吸收光谱; (e)参数Δh随波长变化的吸收光谱; (f)参数Δy随波长变化的吸收光谱

    Fig. 8.  (a) Unit structure diagram of absorber Δw; (b) unit structure diagram of absorber Δh; (c) unit structure diagram of absorber Δy; (d) absorption spectra of parameter Δw varying with wavelength; (e) absorption spectra of parameter Δh as a function of wavelength; (f) absorption spectra of parameter Δy as a function of wavelength.

    图 9  w = 155 nm时, (a)光源偏振角α和(b)光源入射角θ对BIC的影响; 分别是w = 140 nm时, (c)光源偏振角α和(d)光源入射角θ对BIC的影响

    Fig. 9.  Effects of (a) the light source polarization angle α and (b) incidence angle θ on the BIC at w = 155 nm, respectively; effects of (c) the light source polarization angle α and (d) incidence angle θ on the BIC at w = 140 nm, respectively.

    图 10  (a)不同折射率下吸收器的吸收光谱; (b)不同折射率下吸收峰值和波长的变化; (c)不同折射率下半峰宽度和Q的变化; (d)不同折射率下灵敏度和品质因数的变化

    Fig. 10.  (a) Absorption spectra of the absorber at different refractive indices; (b) variation of absorption peak and wavelength at different refractive indices; (c) variation of full width half maximum and Q at different refractive indices; (d) variation of sensitivity and figure of merit at different refractive indices.

    图 11  (a)参数d调控的单频开关; (b)参数d调控的双频异步开关

    Fig. 11.  (a) Single-frequency switch regulated by parameter d; (b) dual-frequency asynchronous switch with parameter d modulation.

    表 1  本文吸收器的特性与文献进行比较

    Table 1.  Characterization of the absorber in this paper is compared with other published references.

    文献年份 模型 调制数目 吸收/% MD/% IL/dB
    2020[39] 石墨烯
    超材料
    双频 93.5 0.32
    85.6 0.25
    2022[37] 石墨烯/硅
    超表面
    单频 99.96 99.1 0.0015
    2022[40] 石墨烯
    调制器
    单频 99.7 0.0034
    2023[41] 石墨烯
    光栅
    双频 99.8 94.72 0.012
    99.9 94.98 0.08
    本工作 Si/Al2O3/Ag
    超材料
    双频 99.9 99.4 0.0004
    96.7 98.8 0.015
    下载: 导出CSV
    Baidu
  • [1]

    Ali A, Mitra A, Aïssa B 2022 Nanomaterials 12 1027Google Scholar

    [2]

    Chen Y, Ai B, Wong Z J 2020 Nano Converg. 7 18Google Scholar

    [3]

    Martinez F, Maldovan M 2022 Mater. Today Phys. 27 100819Google Scholar

    [4]

    Padilla W J, Fan K 2022 Metamaterial Eectromagnetic Wave Absorbers (Springer Nature) p12

    [5]

    Nie G, Shi Q, Zhu Z, Shi J 2014 Appl. Phys. Lett. 105 201909Google Scholar

    [6]

    Luo X, Liu Z, Wang L, Liu J, Lin Q 2018 Appl. Phys. Express 11 105102Google Scholar

    [7]

    Lavchiev V M, Jakoby B, Hedenig U, Grille T, Irsigler P, Ritchie G, Kirkbride J, Lendl B SENSORS 2014 IEEE, Valencia, November 2–5, 2014 p645

    [8]

    Ren Y, Cui W, Yang Z, Xiong B, Zhang L, Li Z, Lu S, Huo Y, Wu X, Li G 2024 Opt. Mater. 149 115073Google Scholar

    [9]

    Jiang H, Sabarinathan J, Manifar T, Mittler S 2009 J. Lightwave Technol. 27 2264Google Scholar

    [10]

    Tarumaraja K A, Menon P S, Said F A, Jamil N A, Ehsan A A, Shaari S, Majlis B Y, Jalar A 2016 IEEE International Conference on Semiconductor Electronicsp, Kuala Lumpur Malaysia, August 17–19, 2016 p79

    [11]

    Lin H, Lin K T, Yang T, Jia B 2021 Adv. Mater. Technol. 6 2000963Google Scholar

    [12]

    Boardman A D, Grimalsky V V, Kivshar Y S, Koshevaya S V, Lapine M, Litchinitser N M, Malnev V N, Noginov M, Rapoport Y G, Shalaev V M 2011 Laser Photonics Rev. 5 287Google Scholar

    [13]

    Kowerdziej R, Ferraro A, Zografopoulos D C, Caputo R 2022 Adv. Opt. Mater. 10 2200750Google Scholar

    [14]

    Jin R, Huang L J, Zhou C B, Guo J, Fu Z, Chen J, Wang J, Li X, Yu F, Chen J 2023 Nano Lett. 23 9105Google Scholar

    [15]

    Zhou C B, Huang L J, Jin R, Xu L, Li G H, Rahmani M, Chen X S, Lu W, Miroshnichenko A E 2023 Laser Photonics Rev. 17 2200564Google Scholar

    [16]

    Koshelev K, Bogdanov A, Kivshar Y 2019 Sci. Bull. 64 836Google Scholar

    [17]

    Masoudian Saadabad R, Huang L J, Miroshnichenko A E 2021 Phys. Rev. B 104 235405Google Scholar

    [18]

    Yuan L, Lu Y Y 2017 Opt. Lett. 42 4490Google Scholar

    [19]

    Jordan P, Von Neumann J, Wigner E P 1993 The Collected Works of Eugene Paul Wigner: Part A: The Scientific Papers (Springer Berlin Heidelberg) p298

    [20]

    Xie P, Liang Z C, Jia T T, Li D M, Chen Y X, Chang P J, Zhang H, Wang W 2021 Phys. Rev. B 104 125446Google Scholar

    [21]

    Huang L J, Jin R, Zhou C B, Li G H, Xu L, Overvig A, Deng F, Chen X H, Lu W, Alù A, Miroshnichenko A E 2023 Nat. Commun. 14 3433Google Scholar

    [22]

    Wan S, Qin C H, Wang K D, Li Y C, Guan C Y, Lv B, Li W J, Shi J H 2022 J. Appl. Phys. 131 213104Google Scholar

    [23]

    Wu F, Qi X, Qin M B, Luo M, Long Y, Wu J J, Sun Y, Jiang H T, Liu T T, Xiao S Y, Chen H 2024 Phys. Rev. B 109 085436Google Scholar

    [24]

    Wu F, Wu J J, Guo Z W, Jiang H T, Sun Y, Li Y H, Ren J, Chen H 2019 Phys. Rev. Appl. 12 014028Google Scholar

    [25]

    Gao E D, Li H J, Liu C, Ruan B X, Li M, Zhang B H, Zhang Z 2022 Phys. Chem. Chem. Phys. 24 20125Google Scholar

    [26]

    Moriasa K, Hasebe H, Sugimoto H, Fujii M 2023 J. Appl. Phys. 133 173102Google Scholar

    [27]

    Wang Y X, Cui W, Ren Y, Li Z X, Zhang L, Lei W L, Huo Y S, He Z H 2024 Infrared Phys. Technol. 136 105091Google Scholar

    [28]

    Ki Y G, Jeon H W, Kim S J 2024 Electronics 13 753Google Scholar

    [29]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [30]

    Schinke C, Christian Peest P, Schmidt J, Brendel R, Bothe K, Vogt M R, Kröger I, Winter S, Schirmacher A, Lim S 2015 Aip Adv. 5 067168Google Scholar

    [31]

    Malitson I H, Dodge M J 1972 J. Opt. Soc. Am 62 1405

    [32]

    Alaee R, Farhat M, Rockstuhl C, Lederer F 2012 Opt. Express 20 28017Google Scholar

    [33]

    Xie Y D, Liu Z M, Zhou F Q, Luo X, Cheng Z Q, Yang R H, Cheng J, Yang G X 2023 Diamond Relat. Mater. 137 110100Google Scholar

    [34]

    Qing Y M, Ma H F, Cui T J 2018 Opt. Express 26 32442Google Scholar

    [35]

    Li H J, Wang L L, Zhai X 2016 Sci. Rep. 6 36651Google Scholar

    [36]

    Smith D, Vier D, Koschny T, Soukoulis C 2005 Phys. Rev. E 71 036617Google Scholar

    [37]

    Wang Y X, Cui W, Wang X J, Lei W L, Li L Q, Cao X L, He H, He Z H 2022 Vacuum 206 111515Google Scholar

    [38]

    Gao E D, Cao G T, Deng Y, Li H J, Chen X S, Li G H 2024 Opt. Laser Technol. 168 109840Google Scholar

    [39]

    Li M, Li H J, Xu H, Xiong C X, Zhao M Z, Liu C, Ruan B X, Zhang B H, Wu K 2020 New J. Phys. 22 103030Google Scholar

    [40]

    Kim M, Kim S, Kim S 2022 Sci. Rep. 12 1445Google Scholar

    [41]

    Gao E D, Jin R, Fu Z C, Cao G T, Deng Y, Chen J, Li G H, Chen X S, Li H J 2023 Photonics Res. 11 456Google Scholar

  • [1] 杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全. 基于石墨烯等离激元太赫兹结构的传感及慢光应用.  , 2024, 73(15): 157802. doi: 10.7498/aps.73.20240668
    [2] 夏兆生, 刘宇行, 包正, 王丽华, 吴博, 王刚, 王辉, 任信钢, 黄志祥. 基于准连续域束缚态的强圆二色性超表面.  , 2024, 73(17): 178102. doi: 10.7498/aps.73.20240834
    [3] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态.  , 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [4] 闫梦, 孙珂, 宁廷银, 赵丽娜, 任莹莹, 霍燕燕. 基于共振波导光栅结构准连续域束缚态的低阈值纳米激光器的数值研究.  , 2023, 72(4): 044202. doi: 10.7498/aps.72.20221894
    [5] 王正宇, 黄飞, 薛润玉, 王正岭. 基于连续金属膜对称光栅结构的完美吸收特性.  , 2023, 72(5): 054201. doi: 10.7498/aps.72.20221701
    [6] 范辉颖, 罗杰. 非厄密电磁超表面研究进展.  , 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [7] 李朝刚, 汪茂胜, 方泉, 彭雪城, 黄万霞. 表象变换和久期微扰理论在耦合杜芬方程中的应用.  , 2021, 70(2): 024601. doi: 10.7498/aps.70.20201057
    [8] 王鑫, 王俊林. 太赫兹波段电磁超材料吸波器折射率传感特性.  , 2021, 70(3): 038102. doi: 10.7498/aps.70.20201054
    [9] 王玥, 崔子健, 张晓菊, 张达篪, 张向, 周韬, 王暄. 超材料赋能先进太赫兹生物化学传感检测技术的研究进展.  , 2021, 70(24): 247802. doi: 10.7498/aps.70.20211752
    [10] 蒋黎英, 易颖婷, 易早, 杨华, 李治友, 苏炬, 周自刚, 陈喜芳, 易有根. 基于单层二硫化钼的高品质因子、高品质因数的四波段完美吸收器.  , 2021, 70(12): 128101. doi: 10.7498/aps.70.20202163
    [11] 朱存远, 李朝刚, 方泉, 汪茂胜, 彭雪城, 黄万霞. 用久期微扰理论将弹簧振子模型退化为耦合模理论.  , 2020, 69(7): 074501. doi: 10.7498/aps.69.20191505
    [12] 李雪健, 曹敏, 汤敏, 芈月安, 陶洪, 古皓, 任文华, 简伟, 任国斌. M型少模光纤中模间受激布里渊散射特性及其温度和应变传感特性.  , 2020, 69(11): 114203. doi: 10.7498/aps.69.20200103
    [13] 涂兴华, 赵宜超. 对称熔融拉锥型光纤光栅温度和应力传感特性.  , 2019, 68(24): 244204. doi: 10.7498/aps.68.20191034
    [14] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体.  , 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [15] 付兴虎, 谢海洋, 杨传庆, 张顺杨, 付广伟, 毕卫红. 基于包层模谐振的三包层石英特种光纤温度传感特性研究.  , 2016, 65(2): 024211. doi: 10.7498/aps.65.024211
    [16] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究.  , 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [17] 裴丽, 赵瑞峰. 统一非对称光波导横向耦合模理论分析.  , 2013, 62(18): 184213. doi: 10.7498/aps.62.184213
    [18] 李鹏, 赵建林, 张晓娟, 侯建平. 三角结构三芯光子晶体光纤中的模式耦合特性分析.  , 2010, 59(12): 8625-8631. doi: 10.7498/aps.59.8625
    [19] 王燕花, 任文华, 刘 艳, 谭中伟, 简水生. 相位修正的耦合模理论用于计算光纤Bragg光栅法布里-珀罗腔透射谱.  , 2008, 57(10): 6393-6399. doi: 10.7498/aps.57.6393
    [20] 王目光, 魏 淮, 简水生. 复合型双周期光纤光栅的理论与实验研究.  , 2003, 52(3): 609-614. doi: 10.7498/aps.52.609
计量
  • 文章访问数:  931
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-21
  • 修回日期:  2024-07-31
  • 上网日期:  2024-07-31
  • 刊出日期:  2024-09-05

/

返回文章
返回
Baidu
map