搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于连续金属膜对称光栅结构的完美吸收特性

王正宇 黄飞 薛润玉 王正岭

引用本文:
Citation:

基于连续金属膜对称光栅结构的完美吸收特性

王正宇, 黄飞, 薛润玉, 王正岭
cstr: 32037.14.aps.72.20221701

Perfect absorption of symmetric grating structure based on the continuous metal film

Wang Zheng-Yu, Huang Fei, Xue Run-Yu, Wang Zheng-Ling
cstr: 32037.14.aps.72.20221701
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 提出一种在连续金属膜两侧放置对称介质光栅来实现完美吸收的方案. 在银膜厚度为20 nm, 晶格常数为400 nm, 介质折射率为1.46的情况下, 得到最大吸收系数为99.47%. 此时, 吸收谱的线宽为2.53 nm, 品质因子Q为296.06. 研究发现, 在完美吸收时, 入射光的反射和透射受到有效抑制, 吸收系数的相位梯度达到最大. 完美吸收由长程表面等离子激元(LRSPP)决定, 它的电场主要分布在银膜的外侧并形成驻波状, 传输损失很小. 当银膜厚度减小时, 吸收谱线的线宽逐渐减少, 而Q值增大. 当厚度降到12 nm左右时, 得到最小线宽0.98 nm和最大Q值760.0左右. 完美吸收时的锐利吸收曲线和较高的品质因子可用于高灵敏度的微纳米传感器的设计与应用.
    The perfect absorption is achieved by the structure of a continuous metal film with symmetrical grating structure on both sides. The maximum absorption coefficient can reach 99.47% for a optimal structural parameters with a silver film thickness of 20 nm, a lattice constant of 400 nm, and a medium refractive index of 1.46. The full width of half maximum of the absorption line is about 2.53 nm, and the quality factor Q is 296.06. When the absorption is perfect, the reflection and transmission of the incident light are effectively suppressed, and the phase gradient of the absorption coefficient reaches a maximum value. The perfect absorption is determined by the long-range surface plasma polariton (LRSPP) with a little transmission loss, long propagation distance and deep penetration depth. And the electric field is mainly distributed outside the silver film with a standing wave distribution. As the thickness of the silver film decreases, the line width of the absorption spectrum gradually decreases, while the Q value and electric field strength increase. When the thickness drops to about 12 nm, the minimum line width is 0.98 nm and the maximum Q value is 760.0. The sharp absorption curve and very high quality factor at the perfect absorption can be used in the design and application of the highly sensitive micro-nano sensor.
      通信作者: 王正岭, zlwang@ujs.edu.cn
    • 基金项目: 江苏省自然科学基金(批准号: BK20161342)和江苏省“六大人才高峰”高层次人才项目(批准号: GDZB-018)资助的课题.
      Corresponding author: Wang Zheng-Ling, zlwang@ujs.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161342) and the Six Talent Peaks Project of Jiangsu Province, China (Grant No. GDZB-018).
    [1]

    Ritchie R H 1957 Phys. Rev. 106 874Google Scholar

    [2]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [3]

    Wang Z L 2009 Prog. Phys. 29 287

    [4]

    Sarid D 1981 Phys. Rev. Lett. 47 1927Google Scholar

    [5]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508Google Scholar

    [6]

    Berini P 2009 Adv. Opt. Photonics 1 484Google Scholar

    [7]

    Berini P 2000 Opt. Express 7 329Google Scholar

    [8]

    Wong W R, Berini P 2019 Opt. Express 27 25470Google Scholar

    [9]

    Fuentes-Fuentes M A, May-Arrioja D A, Guzman-Sepulveda J R, Arteaga-Sierra F, Torres-Cisneros M, Likamwa P L, Sánchez-Mondragón J J 2019 Opt. Express 27 8858Google Scholar

    [10]

    Xu Y, Wang F, Gao Y, Zhang D, Sun X, Berini P 2020 Sensors 20 2507Google Scholar

    [11]

    Chen X I, Wenyi B U, Wu Z, Zhang H, Pu J 2021 Opt. Express 29 16455Google Scholar

    [12]

    Zakaria R, Zainuddin N, Fahri M, Thirunavakkarasu P M, Harun S W 2021 Opt. Fiber Technol. 61 102449Google Scholar

    [13]

    Hooper I R, Sambles J R 2004 Phys. Rev. B 70 045421Google Scholar

    [14]

    Sukharev M, Sievert P R, Seideman T, Ketterson J B 2009 J. Chem. Phys. 131 034708Google Scholar

    [15]

    Mu W, Buchholz D B, Sukharev M, Jang J I, Chang R P H, Ketterson J B 2010 Opt. Lett. 35 550Google Scholar

    [16]

    Mu W, Ketterson J B 2011 Opt. Lett. 36 4713Google Scholar

    [17]

    Abutoama M, Abdulhalim I 2015 Opt. Express 23 28667Google Scholar

    [18]

    Abutoama M, Abdulhalim I 2016 IEEE J. Sel. Top. Quant. 23 72

    [19]

    张凯, 杜春光, 高健存 2017 66 227302Google Scholar

    Zhang K, Du C G, Gao J C 2017 Acta Phys. Sin. 66 227302Google Scholar

    [20]

    Zeng L W, Chen M, Yan W, Li Z F, Yan F H 2020 Opt. Commun. 457 124641Google Scholar

    [21]

    Joseph S, Sarkar S, Joseph J 2020 ACS Appl. Mater. Interfaces 12 46519Google Scholar

    [22]

    Wang Z L, Li S Q, Chang R P H, Ketterson J B 2014 J. Appl. Phys. 116 033103Google Scholar

    [23]

    薛润玉, 王正宇, 王正岭 2022 光学学报 42 228

    Xue R Y, Wang Z Y, Wang Z L 2022 Acta Opt. Sin. 42 228

    [24]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667Google Scholar

  • 图 1  (a) 连续金属膜对称光栅结构示意图; (b) Comsol模拟的结构单元

    Fig. 1.  (a) Schematic diagram of the symmetric grating structure on a continuous metal film; (b) structural units of the Comsol simulation.

    图 2  h = 172.4 nm, d = 364.1 nm时, T, RT+R的谱线图

    Fig. 2.  Evolution of T, R and T + R with wavelength as h = 172.4 nm and d = 364.1 nm.

    图 3  d = 364.1 nm, 不同h时的T+R随波长演化曲线

    Fig. 3.  Evolution of T + R with wavelength for different h as d = 364.1 nm.

    图 4  d = 364.1 nm时, T + R 的极小值与对应波长随h的演化 (a) T + R 极小值随h的演化; (b) T + R 极小值对应波长随h的演化

    Fig. 4.  Evolution of the minima of T + R and the corresponding wavelength with h as d = 364.1 nm: (a) Evolution of the minima with h; (b) evolution of the corresponding wavelength with h

    图 5  h = 172.4 nm时, 不同dT+R随波长演化曲线

    Fig. 5.  Evolution of T + R with wavelength for different d as h = 172.4 nm.

    图 6  h = 172.4 nm时, T + R 的极小值与对应波长随d的演化 (a) T + R 极小值随d的演化; (b) T + R 极小值对应波长随d的演化

    Fig. 6.  Evolution of the minima of T + R and the corresponding wavelength with d as h = 172.4 nm: (a) Evolution of the minima with d; (b) evolution of the corresponding wavelength with d

    图 7  h = 172.4 nm, d = 350.0 nm, $ {\lambda _0} $= 550.0 nm时, LRSPP的电场Eyx-y平面上分布 (a) Eyx-y平面上的二维分布; (b) 在x = 100 nm处, Eyy方向上的分布

    Fig. 7.  The distribution of Ey of LRSPP in the x-y plane as h = 172.4 nm, d = 350.0 nm, $ {\lambda _0} $= 550.0 nm: (a) 2D distribution of Ey in the x-y plane; (b) the distribution of Ey in the y direction as x = 100 nm.

    图 8  h = 172.4 nm, d = 350.0 nm, $ {\lambda _0} $= 725.0 nm时, SRSPP的电场Eyx-y平面上分布 (a) Eyx-y平面上的二维分布; (b) 在x = –110 nm处, Eyy方向上的分布

    Fig. 8.  The distribution of Ey of SRSPP in the x-y plane as h = 172.4 nm, d = 350.0 nm, $ {\lambda _0} $ = 725.0 nm: (a) 2D distribution of Ey in the x-y plane ; (b) the distribution of Ey in the y direction as x = –110 nm.

    图 9  完美吸收状态时4种典型的Ey分布

    Fig. 9.  Typical distribution of Ey at the perfect absorption.

    图 10  吸收谱相位以及其相位梯度随波长演化

    Fig. 10.  Evolution of the phase from absorption spectrum and its gradient with wavelength.

    图 11  第一布里渊区内的色散曲线

    Fig. 11.  Dispersion curves in the first Brillouin zone.

    图 12  在完美吸收情况下品质因子和线宽随银膜厚度的变化关系

    Fig. 12.  The relationship between quality factor and line width with silver film thickness under perfect absorption.

    图 13  d = 320 nm, h = 200 nm, t = 20 nm时气体折射率由1变化到1.005时, T+R谱变化情况

    Fig. 13.  The absorption spectrum of the gas refractive index changes from 1 to 1.005 as d = 320 nm, h = 200 nm, t = 20 nm.

    图 14  折射率在1.000—1.005范围内时, 灵敏度随介质宽度d变化的示意图

    Fig. 14.  Schematic representation of the sensitivity varying with d in the refractive index range from 1.000 to 1.005.

    图 15  折射率在1.000—1.005范围内时, 灵敏度随介质高度h变化的示意图

    Fig. 15.  Schematic representation of the sensitivity varying with h in the refractive index range from 1.000 to 1.005.

    Baidu
  • [1]

    Ritchie R H 1957 Phys. Rev. 106 874Google Scholar

    [2]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [3]

    Wang Z L 2009 Prog. Phys. 29 287

    [4]

    Sarid D 1981 Phys. Rev. Lett. 47 1927Google Scholar

    [5]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508Google Scholar

    [6]

    Berini P 2009 Adv. Opt. Photonics 1 484Google Scholar

    [7]

    Berini P 2000 Opt. Express 7 329Google Scholar

    [8]

    Wong W R, Berini P 2019 Opt. Express 27 25470Google Scholar

    [9]

    Fuentes-Fuentes M A, May-Arrioja D A, Guzman-Sepulveda J R, Arteaga-Sierra F, Torres-Cisneros M, Likamwa P L, Sánchez-Mondragón J J 2019 Opt. Express 27 8858Google Scholar

    [10]

    Xu Y, Wang F, Gao Y, Zhang D, Sun X, Berini P 2020 Sensors 20 2507Google Scholar

    [11]

    Chen X I, Wenyi B U, Wu Z, Zhang H, Pu J 2021 Opt. Express 29 16455Google Scholar

    [12]

    Zakaria R, Zainuddin N, Fahri M, Thirunavakkarasu P M, Harun S W 2021 Opt. Fiber Technol. 61 102449Google Scholar

    [13]

    Hooper I R, Sambles J R 2004 Phys. Rev. B 70 045421Google Scholar

    [14]

    Sukharev M, Sievert P R, Seideman T, Ketterson J B 2009 J. Chem. Phys. 131 034708Google Scholar

    [15]

    Mu W, Buchholz D B, Sukharev M, Jang J I, Chang R P H, Ketterson J B 2010 Opt. Lett. 35 550Google Scholar

    [16]

    Mu W, Ketterson J B 2011 Opt. Lett. 36 4713Google Scholar

    [17]

    Abutoama M, Abdulhalim I 2015 Opt. Express 23 28667Google Scholar

    [18]

    Abutoama M, Abdulhalim I 2016 IEEE J. Sel. Top. Quant. 23 72

    [19]

    张凯, 杜春光, 高健存 2017 66 227302Google Scholar

    Zhang K, Du C G, Gao J C 2017 Acta Phys. Sin. 66 227302Google Scholar

    [20]

    Zeng L W, Chen M, Yan W, Li Z F, Yan F H 2020 Opt. Commun. 457 124641Google Scholar

    [21]

    Joseph S, Sarkar S, Joseph J 2020 ACS Appl. Mater. Interfaces 12 46519Google Scholar

    [22]

    Wang Z L, Li S Q, Chang R P H, Ketterson J B 2014 J. Appl. Phys. 116 033103Google Scholar

    [23]

    薛润玉, 王正宇, 王正岭 2022 光学学报 42 228

    Xue R Y, Wang Z Y, Wang Z L 2022 Acta Opt. Sin. 42 228

    [24]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667Google Scholar

计量
  • 文章访问数:  5281
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-29
  • 修回日期:  2022-12-16
  • 上网日期:  2022-12-26
  • 刊出日期:  2023-03-05

/

返回文章
返回
Baidu
map