搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铜/锰异质结中维度驱动的交换耦合效应

姬慧慧 高兴国 李枝兰

引用本文:
Citation:

铜/锰异质结中维度驱动的交换耦合效应

姬慧慧, 高兴国, 李枝兰

Dimensionality driven exchange coupling effect in cuprate-manganite superlattices

Ji Hui-Hui, Gao Xing-Guo, Li Zhi-Lan
cstr: 32037.14.aps.73.20240849
PDF
HTML
导出引用
  • 过渡金属氧化物异质结界面处各种自由度之间的耦合与竞争关系, 极大地丰富了其物理性质, 并拓展了相关应用范围. 已有研究报道指出维度是调控氧化物异质结性能的有效手段. 本文采用脉冲激光沉积技术制备出高质量外延生长的 SrCuO2/La0.7Ca0.3MnO3 (SCO/LCMO)超晶格, 通过控制维度实现了对超晶格中交换耦合效应的有效调控. 实验发现, 在改变 SCO 厚度的过程中, 其结构将由无限层状构型转变为链状构型, 进而导致异质结界面处氧配位环境的改变. X 射线吸收谱测试证实超晶格中存在电荷转移现象. 在 SCO 较薄时, Mn-O-Cu 之间超交换作用产生的弱磁矩将钉扎铁磁 LCMO 层. 随着 SCO 厚度的增加, 异质结界面处电荷转移减小. 与此同时, SCO 层具有的反铁磁序与邻近铁磁层 LCMO 作用, 导致了交换偏置的产生. 本实验证实了维度在氧化物异质结多功能调控中的重要作用.
    The coupling and competition between various degrees of freedom at the interface of transition metal oxide heterointerfaces greatly enrich their physical properties and expand their relevant application scope. It has been reported that dimensionality is an effective method to regulate the properties of oxide heterostructure. The structure of SCO film exhibits a planar-type-to-chain-type transformation with the change of thickness. In this work, the high-quality SCO/LCMO superlattices are deposited by a pulsed laser deposition system. And the interfacial exchange coupling effect is effectively manipulated by controlling the dimensionality of SCO layer. X-ray absorption spectrum (XAS) measurement shows that the charge transfer occurs at the heterointerface. When the SCO layer is thin, the interfacial superexchange coupling supported by charge transfer generates a weak magnetic moment to pin the ferromagnetic LCMO layer. As the SCO layer thickens, the charge transfer will decrease. Meanwhile, the long-range antiferromagnetic order in thicken SCO layer can interact with LCMO layer, resulting in the exchange bias effect. This experiment confirms the important role of dimensionality in modulating the properties in multifunctional oxide heterostructure.
      通信作者: 姬慧慧, jihuihui_sxnu@163.com
    • 基金项目: 国家自然科学基金(批准号: 12174237, 52171183) 资助的课题.
      Corresponding author: Ji Hui-Hui, jihuihui_sxnu@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174237, 52171183).
    [1]

    Chen S R, Zhang Q H, Li X J, Zhao J L, Lin S, Jin Q, Hong H T, Huon A, Charlton T, Li Q, Yan W S, Wang J O, Ge C, Wang C, Wang B T, Fitzsimmons M R, Guo H Z, Gu L, Yin W, Jin K J, Guo E J 2022 Sci. Adv. 8 eabq3981Google Scholar

    [2]

    Lin S, Zhang Q H, Sang X H, Zhao J L, Cheng S, Huon A, Jin Q, Chen S, Chen S G, Cui W J, Guo H Z, He M, Ge C, Wang C, Wang J O, Fitzsimmons M R, Gu L, Zhu T, Jin K J, Guo E J 2021 Nano Lett. 21 3146Google Scholar

    [3]

    Yi D, Liu J, Hsu S L, Zhang L P, Choi Y S, Kim J W, Chen Z H, Clarkson J D, Serrao C R, Arenholz E, Ryan P J, Xu H X, Birgeneau R J, Ramesh R 2016 PNAS 113 6397Google Scholar

    [4]

    Huang K, Wu L, Wang M Y, Swain N, Motapothula M, Luo Y Z, Han K, Chen M F, Ye C, Yang A J, Xu H, Qi D C, N'Diaye A T, Panagopoulos C, Primetzhofer D, Shen L, Sengupta P, Ma J, Feng Z X, Nan C W, Wang X R 2020 Appl. Phys. Rev. 7 011401Google Scholar

    [5]

    Wu M, Zhang X W, Li X M, Qu K, Sun Y W, Han B, Zhu R X, Gao X Y, Zhang J M, Liu K H, Bai X D, Li X Z, Gao P 2022 Nat. Commun. 13 216Google Scholar

    [6]

    Grutter A J, Vailionis A, Borchers J A, Kirby B J, Flint C L, He C, Arenholz E, Suzuki Y 2016 Nano Lett. 16 5647Google Scholar

    [7]

    Ji H H, Liu X, Li Z L, Jiao Y J, Ren G X, Dou J R, Zhou X C, Zhou G W, Chen J S, Xu X H, 2024 J. Alloys Compd. 979 173489Google Scholar

    [8]

    Shi W X, Zheng J, Li Z, Wang M Q, Zhu Z Z, Zhang J E, Zhang H, Chen Y Z, Hu F X, Shen B G, Chen Y S, Sun J R 2023 Small 20 2308172Google Scholar

    [9]

    Liao Z L, Skoropata E, Freeland J W, Guo E J, Desautels R, Gao X, Sohn C, Rastogi A, Ward T Z, Zou T, Charlton T, Fitzsimmons M R, Lee H N 2019 Nat. Commun. 10 589Google Scholar

    [10]

    Zhou G W, Ji H H, Yan Z, Cai M M, Kang P H, Zhang J, Lu J D, Zhang J X, Chen J S, Xu X H 2022 Sci. Chin. Mater. 65 1902Google Scholar

    [11]

    Flint C L, Vailionis A, Zhou H, Jang H, Lee J S, Suzuki Y 2017 Phys. Rev. B 96 144438Google Scholar

    [12]

    Grutter A J, Yang H, Kirby B J, Fitzsimmons M R, Aguiar J A, Browning N D, Jenkins C A, Arenholz E, Mehta V V, Alaan U S, Suzuki Y 2013 Phys. Rev. Lett. 111 087202Google Scholar

    [13]

    Chandrasena R U, Flint C L, Yang W, Arab A, Nemšák S, Gehlmann M, Özdöl V B, Bisti F, Wijesekara K D, Meyer-Ilse J, Gullikson E, Arenholz E, Ciston J, Schneider C M, Strocov V N, Suzuki Y, Gray A X 2018 Phys. Rev. B 98 155103Google Scholar

    [14]

    Shi W X, Zhang J, Zhan X Z, Li J L, Li Z, Zheng J, Wang M Q, Zhang J E, Zhang H, Zhu T, Chen Y Z, Hu F X, Shen B G, Chen Y S, Sun J R 2024 Appl. Phys. Rev. 11 021403Google Scholar

    [15]

    Zhou G W, Ji H H, Yan Z, Kang P, Li Z, Xu X 2021 Mater. Horiz. 8 2485Google Scholar

    [16]

    陈盛如 林珊, 洪海涛, 崔婷, 金桥, 王灿, 金奎娟, 郭尔佳 2023 72 097502Google Scholar

    Chen S R, Lin S, Hong H T, Cui T, Jin Q, Wang C, Jin K J, Guo E J 2023 Acta Phys. Sin. 72 097502Google Scholar

    [17]

    Li S S, Zhang Q H, Lin S, Sang X H, Need R F, Roldan M A, Cui W J, Hu Z Y, Jin Q, Chen S, Zhao J L, Wang J O, Wang J S, He M, Ge C, Wang C, Lu H B, Wu Z P, Guo H Z, Tong X, Zhu T, Kirby B, Gu L, Jin K J, Guo E J 2021 Adv. Mater. 33 2001324Google Scholar

    [18]

    Samal D, Tan H Y, Molegraaf H, Kuiper B, Siemons W, Bals S, Verbeeck J, Tendeloo G, Takamura Y, Arenholz E, Jenkins C A, Rijnders G, Koste G 2013 Phys. Revi. Lett. 111 096102Google Scholar

    [19]

    Smink A E M, Birkhölzer Y A, Dam J V, Roesthuis F J G, Rijnders G, Hilgenkamp H, Koster G 2020 Phys. Rev. Mater. 4 083806Google Scholar

    [20]

    Zhang Z X, Shao J F, Jin F, Dai K J, Li J Y, Lan D, Hua E, Han Y Y, Wei L, Cheng F, Ge B H, Wang L F, Zhao Y, Wu W B 2022 Nano Lett. 22 7328Google Scholar

    [21]

    Hasegawa S 2012 Charact. Mater. 97 1925Google Scholar

    [22]

    Infante I C, Sánchez F, Wojcik M, Jedryka E, Estradé S, Peiró F, Arbiol J, Laukhin V, Espinós J P 2007 Phys. Rev. B 76 224415Google Scholar

    [23]

    Hadjimichael M, Waelchli A, Mundet B, Mckeown Walker S, De Luca G, Herrero-Martin J, Gibert M, Gariglio S, Triscone J M 2022 APL Mater. 10 101112Google Scholar

    [24]

    Mikhalev K, Verkhovskii S, Gerashenko A, Mirmelstein A, Bobrovskii V, Kumagai K, Furukawa Y, D'yachkova T, Zainulin Y 2004 Phys. Rev. B 69 132415Google Scholar

    [25]

    Ohldag H, Scholl A, Nolting F, Arenholz E, Maat S, Young A T, Carey M, Stöhr J 2003 Phys. Rev. Lett. 91 017203Google Scholar

    [26]

    Maniv E, Murphy R A, Haley S C, Doyle S, John C, Maniv A, Ramakrishna S K, Tang Y L, Ercius P, Ramesh R, Reyes A P, Long J R, Analytis J G 2021 Nat. Phys. 17 525Google Scholar

    [27]

    Zhao X W, Ng S M, Wong L W, Wong H F, Liu Y K, Cheng W F, Mak C L, Zhao J, Leung C W 2022 Appl. Phys. Lett. 121 162406Google Scholar

    [28]

    Yang N, Castro D D, Aruta C, Mazzoli C, Minola M, Brookes N B, Sala M M, Prellie W, Lebedev O I, Tebano A, Balestrino G 2012 J. Appl. Phys. 112 123901Google Scholar

    [29]

    Niu W, Fang Y W, Zhang X Q, Weng Y K, Chen Y D, Zhang H, Gan Y L, Yuan X, Zhang S J, Sun J B, Wang Y L, Wei L J, Xu Y B, Wang X F, Liu W Q, Pu Y 2021 Adv. Electron. Mater. 7 2000803Google Scholar

    [30]

    Zheng J, Shi W X, Li Z, Zhang J, Yang C Y, Zhu Z Z, Wang M Q, Zhang J E, Han F R, Zhang H, Chen Y Z, Hu F X, Shen B G, Chen Y S, Sun J 2024 ACS Nano 18 9232Google Scholar

    [31]

    Zhang Z C, Hansmann P 2017 Phys. Rev. X 7 011023

    [32]

    Chen H H, Millis A 2017 J. Phys. Condens. Matter 29 243001Google Scholar

    [33]

    Han F R, Chen X B, Wang J L, Huang X D, Zhang J E, Song J H, Liu B G, Chen Y S, Bai X D, Hu F X, Shen B G, Sun J R 2021 J. Phys. D: Appl. Phys. 54 185302Google Scholar

    [34]

    Ji H H, Zhou G W, Wang X, Zhang J, Kang P, Xu X 2021 ACS Appl Mater Interfaces 13 15774Google Scholar

  • 图 1  (a) SCO/LCMO 超晶格沉积顺序示意图; (b) L8S2 超晶格样品的部分 RHEED 衍射振荡. 其中, 黄色代表 SCO 层, 紫色代表 LCMO 层

    Fig. 1.  (a) Schematic diagram of deposition sequence of SCO/LCMO superlattices; (b) a part of RHEED oscillation intensity of L8S2 superlattices. Yellow represents the SCO layer, purple represents the L8S2 layer.

    图 2  (a) 不同厚度超晶格样品的 XRD 衍射图, 其中, 单层 LCMO及 SCO 作为参照样品; (b) 超晶格面外晶格常数随 SCO 厚度的变化

    Fig. 2.  (a) XRD spectra of samples with different thickness, where the single LCMO and SCO are as reference; (b) the out-of-plane lattice parameter as a function of SCO thickness in superlattice.

    图 3  (a) L8S2, (b) L8S5, (c) L8S8样品的 AFM 测试图

    Fig. 3.  AFM images of (a) L8S2, (b) L8S5, and (c) L8S8Sample.

    图 4  (a)—(c) L8Sn 超晶格样品的磁性表征(1 emu = 103 A·m2, 1 Oe = 103/(4π) A/m), 其中测试温度为 5 K; (d) HEB (左侧)和MS (右侧) 随SCO 厚度的变化

    Fig. 4.  (a)–(c) Magnetic measurement of L8Sn superlattice at 5 K; (d) the dependence of HEB (left axis) and MS (right axis) with thickness of SCO layer.

    图 5  一系列超晶格样品的(a) Mn L-edge和 (b) Cu L-edge 的 XAS 吸收谱图

    Fig. 5.  (a) Mn L-edge and (b) Cu L-edge of XAS spectra of a series of samples.

    图 6  SCO 为链状(a)或无限层状(b)构型时, 超晶格界面处的原子构型示意图

    Fig. 6.  Interfacial structure of superlattices when SCO layer shows (a) chain-type or (b) planner-type configuration.

    Baidu
  • [1]

    Chen S R, Zhang Q H, Li X J, Zhao J L, Lin S, Jin Q, Hong H T, Huon A, Charlton T, Li Q, Yan W S, Wang J O, Ge C, Wang C, Wang B T, Fitzsimmons M R, Guo H Z, Gu L, Yin W, Jin K J, Guo E J 2022 Sci. Adv. 8 eabq3981Google Scholar

    [2]

    Lin S, Zhang Q H, Sang X H, Zhao J L, Cheng S, Huon A, Jin Q, Chen S, Chen S G, Cui W J, Guo H Z, He M, Ge C, Wang C, Wang J O, Fitzsimmons M R, Gu L, Zhu T, Jin K J, Guo E J 2021 Nano Lett. 21 3146Google Scholar

    [3]

    Yi D, Liu J, Hsu S L, Zhang L P, Choi Y S, Kim J W, Chen Z H, Clarkson J D, Serrao C R, Arenholz E, Ryan P J, Xu H X, Birgeneau R J, Ramesh R 2016 PNAS 113 6397Google Scholar

    [4]

    Huang K, Wu L, Wang M Y, Swain N, Motapothula M, Luo Y Z, Han K, Chen M F, Ye C, Yang A J, Xu H, Qi D C, N'Diaye A T, Panagopoulos C, Primetzhofer D, Shen L, Sengupta P, Ma J, Feng Z X, Nan C W, Wang X R 2020 Appl. Phys. Rev. 7 011401Google Scholar

    [5]

    Wu M, Zhang X W, Li X M, Qu K, Sun Y W, Han B, Zhu R X, Gao X Y, Zhang J M, Liu K H, Bai X D, Li X Z, Gao P 2022 Nat. Commun. 13 216Google Scholar

    [6]

    Grutter A J, Vailionis A, Borchers J A, Kirby B J, Flint C L, He C, Arenholz E, Suzuki Y 2016 Nano Lett. 16 5647Google Scholar

    [7]

    Ji H H, Liu X, Li Z L, Jiao Y J, Ren G X, Dou J R, Zhou X C, Zhou G W, Chen J S, Xu X H, 2024 J. Alloys Compd. 979 173489Google Scholar

    [8]

    Shi W X, Zheng J, Li Z, Wang M Q, Zhu Z Z, Zhang J E, Zhang H, Chen Y Z, Hu F X, Shen B G, Chen Y S, Sun J R 2023 Small 20 2308172Google Scholar

    [9]

    Liao Z L, Skoropata E, Freeland J W, Guo E J, Desautels R, Gao X, Sohn C, Rastogi A, Ward T Z, Zou T, Charlton T, Fitzsimmons M R, Lee H N 2019 Nat. Commun. 10 589Google Scholar

    [10]

    Zhou G W, Ji H H, Yan Z, Cai M M, Kang P H, Zhang J, Lu J D, Zhang J X, Chen J S, Xu X H 2022 Sci. Chin. Mater. 65 1902Google Scholar

    [11]

    Flint C L, Vailionis A, Zhou H, Jang H, Lee J S, Suzuki Y 2017 Phys. Rev. B 96 144438Google Scholar

    [12]

    Grutter A J, Yang H, Kirby B J, Fitzsimmons M R, Aguiar J A, Browning N D, Jenkins C A, Arenholz E, Mehta V V, Alaan U S, Suzuki Y 2013 Phys. Rev. Lett. 111 087202Google Scholar

    [13]

    Chandrasena R U, Flint C L, Yang W, Arab A, Nemšák S, Gehlmann M, Özdöl V B, Bisti F, Wijesekara K D, Meyer-Ilse J, Gullikson E, Arenholz E, Ciston J, Schneider C M, Strocov V N, Suzuki Y, Gray A X 2018 Phys. Rev. B 98 155103Google Scholar

    [14]

    Shi W X, Zhang J, Zhan X Z, Li J L, Li Z, Zheng J, Wang M Q, Zhang J E, Zhang H, Zhu T, Chen Y Z, Hu F X, Shen B G, Chen Y S, Sun J R 2024 Appl. Phys. Rev. 11 021403Google Scholar

    [15]

    Zhou G W, Ji H H, Yan Z, Kang P, Li Z, Xu X 2021 Mater. Horiz. 8 2485Google Scholar

    [16]

    陈盛如 林珊, 洪海涛, 崔婷, 金桥, 王灿, 金奎娟, 郭尔佳 2023 72 097502Google Scholar

    Chen S R, Lin S, Hong H T, Cui T, Jin Q, Wang C, Jin K J, Guo E J 2023 Acta Phys. Sin. 72 097502Google Scholar

    [17]

    Li S S, Zhang Q H, Lin S, Sang X H, Need R F, Roldan M A, Cui W J, Hu Z Y, Jin Q, Chen S, Zhao J L, Wang J O, Wang J S, He M, Ge C, Wang C, Lu H B, Wu Z P, Guo H Z, Tong X, Zhu T, Kirby B, Gu L, Jin K J, Guo E J 2021 Adv. Mater. 33 2001324Google Scholar

    [18]

    Samal D, Tan H Y, Molegraaf H, Kuiper B, Siemons W, Bals S, Verbeeck J, Tendeloo G, Takamura Y, Arenholz E, Jenkins C A, Rijnders G, Koste G 2013 Phys. Revi. Lett. 111 096102Google Scholar

    [19]

    Smink A E M, Birkhölzer Y A, Dam J V, Roesthuis F J G, Rijnders G, Hilgenkamp H, Koster G 2020 Phys. Rev. Mater. 4 083806Google Scholar

    [20]

    Zhang Z X, Shao J F, Jin F, Dai K J, Li J Y, Lan D, Hua E, Han Y Y, Wei L, Cheng F, Ge B H, Wang L F, Zhao Y, Wu W B 2022 Nano Lett. 22 7328Google Scholar

    [21]

    Hasegawa S 2012 Charact. Mater. 97 1925Google Scholar

    [22]

    Infante I C, Sánchez F, Wojcik M, Jedryka E, Estradé S, Peiró F, Arbiol J, Laukhin V, Espinós J P 2007 Phys. Rev. B 76 224415Google Scholar

    [23]

    Hadjimichael M, Waelchli A, Mundet B, Mckeown Walker S, De Luca G, Herrero-Martin J, Gibert M, Gariglio S, Triscone J M 2022 APL Mater. 10 101112Google Scholar

    [24]

    Mikhalev K, Verkhovskii S, Gerashenko A, Mirmelstein A, Bobrovskii V, Kumagai K, Furukawa Y, D'yachkova T, Zainulin Y 2004 Phys. Rev. B 69 132415Google Scholar

    [25]

    Ohldag H, Scholl A, Nolting F, Arenholz E, Maat S, Young A T, Carey M, Stöhr J 2003 Phys. Rev. Lett. 91 017203Google Scholar

    [26]

    Maniv E, Murphy R A, Haley S C, Doyle S, John C, Maniv A, Ramakrishna S K, Tang Y L, Ercius P, Ramesh R, Reyes A P, Long J R, Analytis J G 2021 Nat. Phys. 17 525Google Scholar

    [27]

    Zhao X W, Ng S M, Wong L W, Wong H F, Liu Y K, Cheng W F, Mak C L, Zhao J, Leung C W 2022 Appl. Phys. Lett. 121 162406Google Scholar

    [28]

    Yang N, Castro D D, Aruta C, Mazzoli C, Minola M, Brookes N B, Sala M M, Prellie W, Lebedev O I, Tebano A, Balestrino G 2012 J. Appl. Phys. 112 123901Google Scholar

    [29]

    Niu W, Fang Y W, Zhang X Q, Weng Y K, Chen Y D, Zhang H, Gan Y L, Yuan X, Zhang S J, Sun J B, Wang Y L, Wei L J, Xu Y B, Wang X F, Liu W Q, Pu Y 2021 Adv. Electron. Mater. 7 2000803Google Scholar

    [30]

    Zheng J, Shi W X, Li Z, Zhang J, Yang C Y, Zhu Z Z, Wang M Q, Zhang J E, Han F R, Zhang H, Chen Y Z, Hu F X, Shen B G, Chen Y S, Sun J 2024 ACS Nano 18 9232Google Scholar

    [31]

    Zhang Z C, Hansmann P 2017 Phys. Rev. X 7 011023

    [32]

    Chen H H, Millis A 2017 J. Phys. Condens. Matter 29 243001Google Scholar

    [33]

    Han F R, Chen X B, Wang J L, Huang X D, Zhang J E, Song J H, Liu B G, Chen Y S, Bai X D, Hu F X, Shen B G, Sun J R 2021 J. Phys. D: Appl. Phys. 54 185302Google Scholar

    [34]

    Ji H H, Zhou G W, Wang X, Zhang J, Kang P, Xu X 2021 ACS Appl Mater Interfaces 13 15774Google Scholar

  • [1] 魏浩铭, 张颖, 张宙, 吴仰晴, 曹丙强. 极性补偿对LaMnO3/LaNiO3超晶格交换偏置场强度的影响.  , 2022, 71(15): 156801. doi: 10.7498/aps.71.20220365
    [2] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源.  , 2022, 71(4): 048703. doi: 10.7498/aps.71.20211831
    [3] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源.  , 2021, (): . doi: 10.7498/aps.70.20211831
    [4] 魏纪周, 张铭, 邓浩亮, 楚上杰, 杜敏永, 严辉. Bi0.8Ba0.2FeO3/La0.7Sr0.3MnO3异质结制备及其交换偏置效应研究.  , 2015, 64(8): 088101. doi: 10.7498/aps.64.088101
    [5] 李永超, 周航, 潘丹峰, 张浩, 万建国. Co/Co3O4/PZT多铁复合薄膜的交换偏置效应及其磁电耦合特性.  , 2015, 64(9): 097701. doi: 10.7498/aps.64.097701
    [6] 刘奎立, 周思华, 陈松岭. 金属离子掺杂对CuO基纳米复合材料的交换偏置调控.  , 2015, 64(13): 137501. doi: 10.7498/aps.64.137501
    [7] 周广宏, 潘旋, 朱雨富. BiFeO3/Ni81Fe19磁性双层膜中的交换偏置及其热稳定性研究.  , 2013, 62(9): 097501. doi: 10.7498/aps.62.097501
    [8] 张洪武, 周文平, 刘恩克, 王文洪, 吴光恒. Heusler合金NiCoMnSn中的磁场驱动马氏体相变、超自旋玻璃和交换偏置.  , 2013, 62(14): 147501. doi: 10.7498/aps.62.147501
    [9] 罗毅, 赵国平, 杨海涛, 宋宁宁, 任肖, 丁浩峰, 成昭华. 单一晶相氧化锰纳米颗粒的交换偏置效应.  , 2013, 62(17): 176102. doi: 10.7498/aps.62.176102
    [10] 伊丁, 秦伟, 解士杰. 钙钛矿锰氧化物中的极化子研究.  , 2012, 61(20): 207101. doi: 10.7498/aps.61.207101
    [11] 田宏玉, 胡经国, 许小勇. 铁磁/反铁磁双层膜中冷却场对交换偏置场的影响.  , 2009, 58(4): 2757-2761. doi: 10.7498/aps.58.2757
    [12] 羊新胜, 赵 勇. 铁磁性锰氧化物掺杂的ZnO压敏电阻性能研究.  , 2008, 57(5): 3188-3192. doi: 10.7498/aps.57.3188
    [13] 许小勇, 潘 靖, 胡经国. 交换偏置双层膜中的反铁磁自旋结构及其交换各向异性.  , 2007, 56(9): 5476-5482. doi: 10.7498/aps.56.5476
    [14] 翟中海, 滕 蛟, 李宝河, 王立锦, 于广华, 朱逢吾. 具有垂直各向异性(Pt/Co)n/FeMn多层膜的交换偏置.  , 2006, 55(4): 2064-2068. doi: 10.7498/aps.55.2064
    [15] 潘 靖, 陶永春, 胡经国. 外应力场下铁磁/反铁磁双层膜系统中的交换偏置.  , 2006, 55(6): 3032-3037. doi: 10.7498/aps.55.3032
    [16] 滕蛟, 蔡建旺, 熊小涛, 赖武彦, 朱逢吾. NiFe/FeMn双层膜交换偏置的形成及热稳定性研究.  , 2004, 53(1): 272-275. doi: 10.7498/aps.53.272
    [17] 束正煌, 董锦明. 轨道序对半掺杂锰氧化物光学性质的影响.  , 2003, 52(11): 2918-2922. doi: 10.7498/aps.52.2918
    [18] 李明华, 于广华, 何珂, 朱逢吾, 赖武彦. 具有分隔层Bi的反铁磁/铁磁双层薄膜间的短程交换耦合.  , 2002, 51(12): 2854-2857. doi: 10.7498/aps.51.2854
    [19] 滕蛟, 蔡建旺, 熊小涛, 赖武彦, 朱逢吾. (Ni0.81Fe0.19)1-xCrx作为种子层对NiFe/FeMn交换偏置的影响.  , 2002, 51(12): 2849-2853. doi: 10.7498/aps.51.2849
    [20] 敬 超, 金晓峰, 董国胜, 龚小燕, 郁黎明, 郑卫民. 分子束外延生长Fe/Fe50Mn50双层膜的交换偏置.  , 2000, 49(10): 2022-2026. doi: 10.7498/aps.49.2022
计量
  • 文章访问数:  519
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-18
  • 修回日期:  2024-09-02
  • 上网日期:  2024-10-08
  • 刊出日期:  2024-11-05

/

返回文章
返回
Baidu
map