搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带电沙尘大气对微波量子照明雷达性能的影响

杨瑞科 王甲乐

引用本文:
Citation:

带电沙尘大气对微波量子照明雷达性能的影响

杨瑞科, 王甲乐

Effect of charged sand/dust atmosphere on performance of microwave quantum illumination radar

Yang Rui-Ke, Wang Jia-Le
PDF
HTML
导出引用
  • 本文旨在研究带电沙尘大气对微波量子照明雷达性能的影响. 基于Mie粒子散射理论, 运用模拟离散随机分布粒子对光子多重散射的蒙特卡罗方法, 对不同能见度及不同粒子带电量的沙尘大气的微波衰减进行分析. 根据量子照明雷达理论, 采用基于分束器理论的分光链路模型模拟沙尘大气信道, 并根据量子雷达方程及量子检测错误概率理论, 开展不同能见度带电沙尘大气对微波量子照明雷达的检测错误概率、信噪比和最大探测范围等影响研究, 并与经典TMN雷达性能进行对比分析. 结果表明, 在沙尘大气中, 量子照明雷达的性能随着能见度的增大而提高, 粒子带电会引起信号衰减增大及系统性能下降, 带电量的变化引起性能的改变是非线性的. 当能见度较高时适当提高信号频率可提高量子照明雷达的性能, 当能见度较低时频率提高带来的增益会小于衰减增大带来的性能下降, 这种情况不宜增大频率. 在与经典雷达的比较发现, 在较低能见度及较低发射平均光子数时量子雷达性能较优, 但随着光子数增加, 优势逐渐降低.
    This work is to study the effects of charged sand/dust atmosphere on the performances of microwave quantum illumination (QI) radar. Based on Mie particle scattering theory, using a Monte Carlo method for simulating the physical process in which photon is scattered multiple times by discrete random distributed particles, the specific attenuation (dB/km) of microwave propagating in sand/dust atmosphere are analyzed under the conditions of varying atmospheric visibility and sand/dust particles with different charged quantities. It is indicated that the specific attenuation obtained by multiple scattering is smaller than that obtained based on Mie theory, for microwave propagating in charged sand/dust atmosphere. The smaller the atmospheric visibility, the greater the difference is, while the difference decreases gradually as the atmospheric visibility increases. Then, it is more reasonable to consider multiple scattering attenuation at lower atmospheric visibility. When sand/dust particle is charged, the specific attenuation is increased, however, this increase is not linear.According to quantum illumination radar theory, a beam splitter-based optical link model is used to simulate the sand/dust atmospheric channel. The effects of charged sand/dust atmosphere with different visibility on the detection error probability, signal-to-noise ratio, and maximum detection range for microwave quantum illumination radar are studied by using quantum radar equation and quantum detection error probability theory. The performances between QI radar and classical two-mode noise (TMN) radar are compared and analyzed. These results show that the performances of quantum illumination radar are improved with sand/dust atmospheric visibility increasing. When sand/dust particles are charged, the performances for QI radar are degraded due to attenuation increasing. The change in the performance is nonlinear with the variation of sand/dust carrying charge quantity. When visibility is high, increasing the signal frequency can improve the performance of quantum illumination radar, but when visibility is low, the gain of frequency increase is offset by the performance decline caused by attenuation increase. Therefore, it is not recommended to increase the frequency in such a case. The comparison with classical radar reveals that QI radar performs better under the condition of lower atmospheric visibility and lower average photon emission, but this advantage diminishes as the number of photons increases.In a word, these results show that the performances of QI radar are more significant at lower atmospheric visibility. Under higher visibility conditions, the QI system SNR can be improved by increasing frequency. The maximum detection range of the QI radar is significantly better than that of the classical TMN radar.
      通信作者: 杨瑞科, yrk18687@163.com
      Corresponding author: Yang Rui-Ke, yrk18687@163.com
    [1]

    Lloyd S 2008 Science 321 1463Google Scholar

    [2]

    Lanzagorta M 2011 Quantum Radar (San Rafael: Morgan & Claypool publishers) pp1–2

    [3]

    Lopaeva E D, Berchera I R, Degiovanni I P, Olivares S, Brida G, Genovese M 2013 Phys. Rev. Lett. 110 153603Google Scholar

    [4]

    Shapiro J H, Zhang Z, Wong F N C 2014 Quantum Inf. Process. 13 2171Google Scholar

    [5]

    任益充, 王书, 饶瑞中, 苗锡奎 2018 67 140301Google Scholar

    Ren Y C, Wang S, Rao R Z, Miao X K 2018 Acta Phys. Sin. 67 140301Google Scholar

    [6]

    Sharma P, Mishra K M, Mishra D K 2024 J. Opt. Soc. Am. B 41 6

    [7]

    Barzanjeh S, Guha S, Weedbrook C, Vitali D, Shapiro J H, Pirandola S 2015 Phys. Rev. Lett. 114 080503Google Scholar

    [8]

    Miao Q, Li X, Wu D W, Luo J W, Wei T L, Zhu H N 2019 Acta Phys. Sin. 68 070302 (in Chinse) [苗强, 李响, 吴德伟 2019 68 070302]Google Scholar

    Miao Q, Li X, Wu D W, Luo J W, Wei T L, Zhu H N 2019 Acta Phys. Sin. 68 070302 (in Chinse)Google Scholar

    [9]

    Barzanjeh S, Pirandola S, Vitali D 2020 Sci. Adv. 6 eabb0451Google Scholar

    [10]

    Livreri P, Enrico E, Fasolo L 2022 Microwave quantum radar using a Josephson traveling wave parametric amplifier. In: Proceedings of the 2022 IEEE Radar Conference (Radar Conf22) New Yorky, USA, March 21–25, 2022 pp1–5

    [11]

    Wei R Y, Li J, Wang W H, Ye Z, Zhao C L, Guo Q H 2023 IET Radar Sonar Navig. 17 1664Google Scholar

    [12]

    Borderieux S, Coatanhay A, Khenchaf A 2023 Prog. Electromagn. Res. B. 103 101Google Scholar

    [13]

    Lanzagorta M 2015 Proceedings of SPIE—Radar Sensor Technology XIX and Active and Passive Signatures VI 9461 946113

    [14]

    Goldhirsh J 1982 IEEE Trans. Antennas Propag. 30 1121Google Scholar

    [15]

    Ghobrial S, Sharief S 1987 IEEE Trans. Antennas Propag. 35 418Google Scholar

    [16]

    Yang R K, Li Q Q, Yao R H 2016 Acta Phys. Sin. 65 094205 (in Chinse) [杨瑞科, 李茜茜, 姚荣辉 2016 65 094205]Google Scholar

    Yang R K, Li Q Q, Yao R H 2016 Acta Phys. Sin. 65 094205 (in Chinse)Google Scholar

    [17]

    Dong X Y, Chen H Y, Guo D H 2011 IEEE Antennas Wireless Propag. Lett. 10 469Google Scholar

    [18]

    Dong Q F, Xu J D, Li Y L 2011 J. Infrared Milli. TE. 32 55Google Scholar

    [19]

    Wang J, Li X, Wang M 2019 Theor. Appl. Climatol. 137 3

    [20]

    Xie L, Gao X B, Qin J H, Zhou J 2020 J. Quant. Spectrosc. Ra. 251 107040Google Scholar

    [21]

    Stephen M B, John J, Alessandra G 1998 Phys. Rev. A. 57 3

    [22]

    Tao Z W, Ren Y C, Aiziguli A B K, Liu S W, Rao R Z 2021 Acta Phys. Sin. 70 170601 (in Chinse) [陶志炜, 任益充, 艾则孜姑丽·阿不都克热木, 刘世韦, 饶瑞中 2021 70 170601]Google Scholar

    Tao Z W, Ren Y C, Aiziguli A B K, Liu S W, Rao R Z 2021 Acta Phys. Sin. 70 170601 (in Chinse)Google Scholar

    [23]

    Usha Devi A R, Rajagopal A K 2009 Phys. Rev. A 79 062320Google Scholar

    [24]

    Calsamiglia J, Munoz-Tapia R, Masanes L 2008 Phys. Rev. A 77 032311Google Scholar

    [25]

    Jeffers J R, Imoto N, Loudon R 1993 Phys. Rev. A 47 4 3346

    [26]

    Dong Q S 1997 Chin. J. Radio Sci. 1 15 (in Chinse) [董庆生 1997 电波科学学报 1 15]

    Dong Q S 1997 Chin. J. Radio Sci. 1 15 (in Chinse)

    [27]

    Li S G, Liu X D, Hou L T. 2003 Appl. d Laser 2 23 (in Chinse) [李曙光, 刘晓东, 侯蓝田 2003 应用激光 2 23]Google Scholar

    Li S G, Liu X D, Hou L T. 2003 Appl. d Laser 2 23 (in Chinse)Google Scholar

    [28]

    Qu J J, Yan M H, Dong G R 2003 Sci. China Earth Sci. 33 593 (in Chinse) [屈建军, 言穆弘, 董光荣 2003 中国科学D辑 33 593]

    Qu J J, Yan M H, Dong G R 2003 Sci. China Earth Sci. 33 593 (in Chinse)

    [29]

    Zheng X., Li X C, Xie L 2011 J. Desert Res. 3 567 (in Chinse) [郑晓静, 李兴财, 谢莉 2011 中国沙漠 3 567]

    Zheng X., Li X C, Xie L 2011 J. Desert Res. 3 567 (in Chinse)

    [30]

    Dong Q S, Zhao Z W, Cong H J 1996 Chin. J. Radio. Sci. 11 29 (in Chinse) [董庆生, 赵振维, 丛洪军 1996 电波科学学报 11 29]

    Dong Q S, Zhao Z W, Cong H J 1996 Chin. J. Radio. Sci. 11 29 (in Chinse)

  • 图 1  量子照明雷达等效模型

    Fig. 1.  Equivalent model of quantum illumination radar.

    图 2  分光链路模型

    Fig. 2.  Beam splitter chain model.

    图 3  不同带电量的沙尘大气微波特征衰减随能见度的变化 (a) 35 GHz; (b) 78 GHz; (c) 95 GHz

    Fig. 3.  Variation of microwave specific attenuation in sand-dust atmosphere with visibility for different charged quantity of sand-dust particles: (a) 35 GHz; (b) 78 GHz; (c) 95 GHz

    图 4  不同带电量下量子照明雷达的Helstrom极限(左)和QCB(右)随能见度的变化 (a) 35 GHz; (b) 78 GHz; (c) 95 GHz

    Fig. 4.  Variation of Helstrom limit (left) and QCB (right) for quantum illumination radar with visibility for different charged quantity of sand-dust particles: (a) 35 GHz; (b) 78 GHz; (c) 95 GHz.

    图 6  不同带电量下量子照明雷达最大探测范围随能见度的变化 (a) 35 GHz; (b) 78 GHz; (c) 95 GHz

    Fig. 6.  Variation of maximum-detection-range for quantum illumination radar with visibility for different charged quantity of sand-dust particles: (a) 35 GHz; (b) 78 GHz; (c) 95 GHz.

    图 7  不同带电量下TMN雷达最大探测范围随能见度的变化 (a) 35 GHz; (b) 78 GHz; (c) 95 GHz

    Fig. 7.  Variation of maximum-detection-range of TMN radar with visibility for different charged quantity of sand-dust particles: (a) 35 GHz; (b) 78 GHz; (c) 95 GHz.

    图 5  不同带电量下量子照明雷达和TMN雷达输出信噪比随能见度的变化 (a) 35 GHz; (b) 78 GHz; (c) 95 GHz

    Fig. 5.  Variation of output SNR for quantum illumination radar and TMN radar with visibility for different charged quantity of sand-dust particles: (a) 35 GHz; (b) 78 GHz; (c) 95 GHz.

    图 8  量子照明雷达和TMN雷达最大探测范围随发射平均光子数的变化 (a) 35 GHz; (b) 78 GHz; (c) 95 GHz

    Fig. 8.  Variation of maximum-detection-range for quantum illumination radar and TMN radar with average photon number emitted: (a) 35 GHz; (b) 78 GHz; (c) 95 GHz.

    表 1  量子照明雷达检测错误概率仿真参数表

    Table 1.  Simulation parameters for detection-error-probability in quantum illumination radar.

    发射信号平均
    光子数${N_{\text{S}}}$
    热噪声平均
    光子数$ {N_{\text{B}}} $
    目标物体
    反射率$\eta $
    最大截断
    维度${n_{\max }}$
    用于探测的纠缠
    光源拷贝数$N$
    目标到量子照明雷达
    的距离z/km
    0.5 1 0.01 30 1 5
    下载: 导出CSV

    表 2  量子照明雷达和经典雷达输出信噪仿真参数表

    Table 2.  Simulation parameters for output signal-to-noise ratio of quantum illumination radar and classical radar.

    信号源每个模式的
    平均光子数 ${N_{\text{S}}}$
    热噪声
    温度 T/K
    量子噪声
    Nq
    接收与发射机
    增益${G_{\text{r}}}$和${G_{\text{t}}}$/dB
    接收机
    带宽$W$
    目标的量子雷达
    散射截面/m2
    目标到量子照明
    雷达距离 z/km
    信号源的中心
    频率 f/GHz
    0.1 3 0.5 40 $f/5$ 40 1 35, 78, 95
    下载: 导出CSV
    Baidu
  • [1]

    Lloyd S 2008 Science 321 1463Google Scholar

    [2]

    Lanzagorta M 2011 Quantum Radar (San Rafael: Morgan & Claypool publishers) pp1–2

    [3]

    Lopaeva E D, Berchera I R, Degiovanni I P, Olivares S, Brida G, Genovese M 2013 Phys. Rev. Lett. 110 153603Google Scholar

    [4]

    Shapiro J H, Zhang Z, Wong F N C 2014 Quantum Inf. Process. 13 2171Google Scholar

    [5]

    任益充, 王书, 饶瑞中, 苗锡奎 2018 67 140301Google Scholar

    Ren Y C, Wang S, Rao R Z, Miao X K 2018 Acta Phys. Sin. 67 140301Google Scholar

    [6]

    Sharma P, Mishra K M, Mishra D K 2024 J. Opt. Soc. Am. B 41 6

    [7]

    Barzanjeh S, Guha S, Weedbrook C, Vitali D, Shapiro J H, Pirandola S 2015 Phys. Rev. Lett. 114 080503Google Scholar

    [8]

    Miao Q, Li X, Wu D W, Luo J W, Wei T L, Zhu H N 2019 Acta Phys. Sin. 68 070302 (in Chinse) [苗强, 李响, 吴德伟 2019 68 070302]Google Scholar

    Miao Q, Li X, Wu D W, Luo J W, Wei T L, Zhu H N 2019 Acta Phys. Sin. 68 070302 (in Chinse)Google Scholar

    [9]

    Barzanjeh S, Pirandola S, Vitali D 2020 Sci. Adv. 6 eabb0451Google Scholar

    [10]

    Livreri P, Enrico E, Fasolo L 2022 Microwave quantum radar using a Josephson traveling wave parametric amplifier. In: Proceedings of the 2022 IEEE Radar Conference (Radar Conf22) New Yorky, USA, March 21–25, 2022 pp1–5

    [11]

    Wei R Y, Li J, Wang W H, Ye Z, Zhao C L, Guo Q H 2023 IET Radar Sonar Navig. 17 1664Google Scholar

    [12]

    Borderieux S, Coatanhay A, Khenchaf A 2023 Prog. Electromagn. Res. B. 103 101Google Scholar

    [13]

    Lanzagorta M 2015 Proceedings of SPIE—Radar Sensor Technology XIX and Active and Passive Signatures VI 9461 946113

    [14]

    Goldhirsh J 1982 IEEE Trans. Antennas Propag. 30 1121Google Scholar

    [15]

    Ghobrial S, Sharief S 1987 IEEE Trans. Antennas Propag. 35 418Google Scholar

    [16]

    Yang R K, Li Q Q, Yao R H 2016 Acta Phys. Sin. 65 094205 (in Chinse) [杨瑞科, 李茜茜, 姚荣辉 2016 65 094205]Google Scholar

    Yang R K, Li Q Q, Yao R H 2016 Acta Phys. Sin. 65 094205 (in Chinse)Google Scholar

    [17]

    Dong X Y, Chen H Y, Guo D H 2011 IEEE Antennas Wireless Propag. Lett. 10 469Google Scholar

    [18]

    Dong Q F, Xu J D, Li Y L 2011 J. Infrared Milli. TE. 32 55Google Scholar

    [19]

    Wang J, Li X, Wang M 2019 Theor. Appl. Climatol. 137 3

    [20]

    Xie L, Gao X B, Qin J H, Zhou J 2020 J. Quant. Spectrosc. Ra. 251 107040Google Scholar

    [21]

    Stephen M B, John J, Alessandra G 1998 Phys. Rev. A. 57 3

    [22]

    Tao Z W, Ren Y C, Aiziguli A B K, Liu S W, Rao R Z 2021 Acta Phys. Sin. 70 170601 (in Chinse) [陶志炜, 任益充, 艾则孜姑丽·阿不都克热木, 刘世韦, 饶瑞中 2021 70 170601]Google Scholar

    Tao Z W, Ren Y C, Aiziguli A B K, Liu S W, Rao R Z 2021 Acta Phys. Sin. 70 170601 (in Chinse)Google Scholar

    [23]

    Usha Devi A R, Rajagopal A K 2009 Phys. Rev. A 79 062320Google Scholar

    [24]

    Calsamiglia J, Munoz-Tapia R, Masanes L 2008 Phys. Rev. A 77 032311Google Scholar

    [25]

    Jeffers J R, Imoto N, Loudon R 1993 Phys. Rev. A 47 4 3346

    [26]

    Dong Q S 1997 Chin. J. Radio Sci. 1 15 (in Chinse) [董庆生 1997 电波科学学报 1 15]

    Dong Q S 1997 Chin. J. Radio Sci. 1 15 (in Chinse)

    [27]

    Li S G, Liu X D, Hou L T. 2003 Appl. d Laser 2 23 (in Chinse) [李曙光, 刘晓东, 侯蓝田 2003 应用激光 2 23]Google Scholar

    Li S G, Liu X D, Hou L T. 2003 Appl. d Laser 2 23 (in Chinse)Google Scholar

    [28]

    Qu J J, Yan M H, Dong G R 2003 Sci. China Earth Sci. 33 593 (in Chinse) [屈建军, 言穆弘, 董光荣 2003 中国科学D辑 33 593]

    Qu J J, Yan M H, Dong G R 2003 Sci. China Earth Sci. 33 593 (in Chinse)

    [29]

    Zheng X., Li X C, Xie L 2011 J. Desert Res. 3 567 (in Chinse) [郑晓静, 李兴财, 谢莉 2011 中国沙漠 3 567]

    Zheng X., Li X C, Xie L 2011 J. Desert Res. 3 567 (in Chinse)

    [30]

    Dong Q S, Zhao Z W, Cong H J 1996 Chin. J. Radio. Sci. 11 29 (in Chinse) [董庆生, 赵振维, 丛洪军 1996 电波科学学报 11 29]

    Dong Q S, Zhao Z W, Cong H J 1996 Chin. J. Radio. Sci. 11 29 (in Chinse)

  • [1] 刘宇韬, 徐苗, 付兴虎, 付广伟. 大气湍流对空间相干光通信的相干探测性能影响.  , 2024, 73(10): 104206. doi: 10.7498/aps.73.20231885
    [2] 胡紫婷, 舒鑫, 王香, 李跃, 徐闰, 洪峰, 马忠权, 蒋最敏, 徐飞. 双配体策略制备大气环境下性能稳定的CsPbIBr2光电探测器.  , 2022, 71(11): 116801. doi: 10.7498/aps.71.20212143
    [3] 杨瑞科, 李福军, 武福平, 卢芳, 魏兵, 周晔. 沙尘湍流大气对自由空间量子通信性能影响研究.  , 2022, 71(22): 220302. doi: 10.7498/aps.71.20221125
    [4] 陶志炜, 任益充, 艾则孜姑丽·阿不都克热木, 刘世韦, 饶瑞中. 基于纠缠相干态的量子照明雷达.  , 2021, 70(17): 170601. doi: 10.7498/aps.70.20210462
    [5] 任益充, 王书, 饶瑞中, 苗锡奎. 大气闪烁对纠缠相干态量子干涉雷达影响机理.  , 2018, 67(14): 140301. doi: 10.7498/aps.67.20172401
    [6] 王书, 任益充, 饶瑞中, 苗锡奎. 大气损耗对量子干涉雷达的影响机理.  , 2017, 66(15): 150301. doi: 10.7498/aps.66.150301
    [7] 李仕春, 王大龙, 李启蒙, 宋跃辉, 刘丽娟, 华灯鑫. 绝对探测大气温度的纯转动拉曼激光雷达系统.  , 2016, 65(14): 143301. doi: 10.7498/aps.65.143301
    [8] 杨瑞科, 李茜茜, 姚荣辉. 沙尘大气电磁波多重散射及衰减.  , 2016, 65(9): 094205. doi: 10.7498/aps.65.094205
    [9] 聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸. 中尺度沙尘暴对量子卫星通信信道的影响及性能仿真.  , 2014, 63(24): 240303. doi: 10.7498/aps.63.240303
    [10] 葛烨, 舒嵘, 胡以华, 刘豪. 大气水汽探测地基差分吸收激光雷达系统设计与性能仿真.  , 2014, 63(20): 204301. doi: 10.7498/aps.63.204301
    [11] 梁善勇, 王江安, 宗思光, 吴荣华, 马治国, 王晓宇, 王乐东. 基于多重散射强度和偏振特征的舰船尾流气泡激光探测方法.  , 2013, 62(6): 060704. doi: 10.7498/aps.62.060704
    [12] 赵建华, 张强. 沙尘大气物理约束方程研究.  , 2010, 59(12): 8954-8967. doi: 10.7498/aps.59.8954
    [13] 李晓春, 高俊丽, 刘绍娥, 周科朝, 黄伯云. 无序对二维声子晶体平板负折射成像的影响.  , 2010, 59(1): 376-380. doi: 10.7498/aps.59.376
    [14] 焦荣珍, 冯晨旭, 马海强. 1.55 μm升频单光子探测量子密钥分配系统的性能研究.  , 2008, 57(3): 1352-1355. doi: 10.7498/aps.57.1352
    [15] 张改霞, 赵曰峰, 张寅超, 赵培涛. 激光雷达白天探测大气边界层气溶胶.  , 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [16] 王治华, 贺应红, 左浩毅, 郑玉臣, 杨经国. 基于高斯光束特性的Mie散射大气激光雷达回波近场信号校正研究.  , 2006, 55(6): 3188-3192. doi: 10.7498/aps.55.3188
    [17] 洪光烈, 张寅超, 赵曰峰, 邵石生, 谭 锟, 胡欢陵. 探测大气中CO2的Raman激光雷达.  , 2006, 55(2): 983-987. doi: 10.7498/aps.55.983
    [18] 郭冠军, 邵 芸. 激光散斑效应对激光雷达探测性能的影响.  , 2004, 53(7): 2089-2093. doi: 10.7498/aps.53.2089
    [19] 孙 涛, 黄锦圣, 张伟力, 柴 路, 王清月, 王克伦. ZnO粉末中无序激射现象时间分辨的研究.  , 2003, 52(9): 2127-2130. doi: 10.7498/aps.52.2127
    [20] 潘晓川, 梁晓玲, 李家明. 量子数亏损理论——多重散射计算方法.  , 1987, 36(4): 426-435. doi: 10.7498/aps.36.426
计量
  • 文章访问数:  432
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-06
  • 修回日期:  2024-07-27
  • 上网日期:  2024-08-14
  • 刊出日期:  2024-09-05

/

返回文章
返回
Baidu
map