搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用于超高速流场电子密度分布测量的七通道微波干涉仪测量系统

马平 田径 田得阳 张宁 吴明兴 唐璞

引用本文:
Citation:

应用于超高速流场电子密度分布测量的七通道微波干涉仪测量系统

马平, 田径, 田得阳, 张宁, 吴明兴, 唐璞

A seven-channels microwave interferometer measurement system for measuring electron density distribution in hypervelocity transient plasma flow

Ma Ping, Tian Jing, Tian De-Yang, Zhang Ning, Wu Ming-Xing, Tang Pu
PDF
HTML
导出引用
  • 高超声速飞行器在临近空间飞行时, 由于飞行器与空气剧烈的相互作用, 形成包含等离子体鞘套和尾迹的等离子体流场, 研究其电子密度分布特性对高超声速飞行器的目标识别、测控通信等具有重要意义. 地面模拟实验测量是研究等离子体包覆高超声速飞行器电磁散射特性的有效方法之一, 为满足地面模拟实验瞬态等离子体流场电子密度分布的测量需求, 本文提出了一种Ka波段七通道微波干涉仪测量系统研制方案. 该系统采用单发七收的方式, 利用单曲面透镜将波导开口天线辐射的电磁波转化为近似平面波, 将7个平行且非对称排列的开口波导作为接收通道天线, 缩减了接收天线的尺寸以及天线之间的距离, 提高了测量的空间分辨率. 基于七通道微波干涉仪测量系统在弹道靶和激波管设备开展了动态实验, 测量了超高速流场电子密度二维分布, 结果表明该系统具备瞬时大动态范围信号的接收能力, 幅度线性动态范围优于65 dB, 相位动态范围180°, 响应时间优于1 μs; 所测量的超高速流场等离子体电子密度二维分布, 能够较好地反映弹道靶设备与激波管设备产生的瞬态等离子体细节变化, 电子密度测量动态范围为(1010—1013) cm–3量级, 电子密度测量误差不超过0.5个数量级, 径向空间分辨率优于15 mm.
    When a hypersonic vehicle is flying in the near space region, the strong friction between the vehicle and the air can cause the air to ionize. As a result, the plasma sheath around the vehicle and the wake flow field behind it are formed, significantly affecting the electromagnetic (EM) scattering characteristics of the vehicle and resulting in the communication blackout. Therefore, the investigation of electron density distribution of the plasma sheath and wake flow field is of the great significance in the detection, communication, etc. of the hypersonic target. In order to meet the requirements for on-ground electron density distribution measurement of the transient plasma flow fields, the feasibility of measuring electron density profile with seven-channel microwave interferometer measurement system is demonstrated in this work. The wake plasma is modeled as a non-uniform multilayer medium, and the full-wave simulation software FEKO is used to calculate the phase-shift information of EM wave transmitting through non-uniform single-layered dielectric plate, uniform and non-uniform multi-layered dielectric plates. According to the simulation results, the dielectric constant of the substrate is retrieved and compared with the preset result. The retrieved results show that it is feasible that the dielectric constant distribution of non-uniform multi-layered dielectric plate is measured by utilizing the proposed microwave interferometer system with one transmission port and seven receptions. The amplitude-phase dynamic range analysis of the proposed Ka-band microwave measurement system is also carried out. The key technologies including large instantaneous amplitude-phase dynamic range and ray tracking inversion algorithm for two-dimensional (2-D) electron density distribution are also developed. Finally, the complete scheme of Ka-band seven-channel microwave interferometer measurement system is introduced. The system includes one lens antenna to generate the required plane wave and seven open-ended waveguide receiving antennas which are asymmetrically arranged to improve the lateral spatial resolution of the system. The system exhibits the amplitude dynamic range and the phase dynamic range of over 65 dB and 180° under 1 MHz IF bandwidth respectively. The plasma electron density distributions are measured by utilizing the proposed seven-channel microwave interferometer system in the ballistic range and multi-functional shock tube. The response time of the system is smaller than 1μs, satisfying the requirement for the two-dimensional distribution measurement of the transient plasma flow field generated by the ballistic range and multi-functional shock tube. The differences between experimental and numerical results are less than 0.5 order of magnitude, and the variations in transient plasma generated in both ballistic target and shock tube equipments are well detected. The measurement range of plasma electron density is 1010-1013 cm–3 and the spatial resolution is better than 15mm. In addition, the proposed ray tracing method is also used to invert the two-dimensional (2D) electron density distributions of both square layered model and cylindrical layered model under identical experimental state. The results are in consistent with each other, indicating that the proposed ray tracing method can be used in the inversion of 2D electron density distribution of plasma with different shapes.
      通信作者: 马平, hbmaping@263.net
    • 基金项目: 国家重点研发计划(批准号: SQ2019YFA0405200)和国家自然科学基金(批准号: 12202479)资助的课题.
      Corresponding author: Ma Ping, hbmaping@263.net
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. SQ2019YFA0405200) and the National Natural Science Foundation of China (Grant No. 12202479).
    [1]

    于哲峰, 孙良奎, 马平, 杨益兼, 张志成, 黄洁 2017 红外 38 39Google Scholar

    Yu Z F, Sun L K, Ma P, Yang Y J, Zhang Z C, Huang J 2017 Infrared 38 39Google Scholar

    [2]

    John W, Marini M 1967 NASA TM X-55824 pp2-8

    [3]

    韦笑, 彭世鏐, 殷红成, 印国泰 2011 系统工程与电子技术 33 506Google Scholar

    Wei X, Peng S L, Yin H C, Yin G T 2011 Syst. Eng. Electron. 33 506Google Scholar

    [4]

    杨利霞, 沈丹华, 施卫东 2013 62 104101Google Scholar

    Yang L X, Shen D H, Shi W D 2013 Acta Phys. Sin. 62 104101Google Scholar

    [5]

    黄勇, 陈宗胜, 徐记伟 2008 舰船电子对抗 31 18Google Scholar

    Huang Y, Chen Z S, Xu J W 2008 SEC 31 18Google Scholar

    [6]

    吴建明, 高本庆 1997 电波科学学报 12 26

    Wu J, Gao B Q 1997 Chin. J. Radio Sci. 12 26

    [7]

    朱方, 吕琼之 2008 现代雷达 30 14Google Scholar

    Zhu F, Lv Q Z 2008 Mod. Radar 30 14Google Scholar

    [8]

    周超, 张小宽, 张晨新 2014 现代雷达 36 83Google Scholar

    Zhou C, Zhang X K, Z hang C X 2014 Mod. Radar 36 83Google Scholar

    [9]

    李勇 2014 硕士学位论文(南京: 南京邮电大学)

    Li Y 2014 M. S. Thesis (Nanjing: Nan-jing University of Posts and Telecommunications

    [10]

    Hayami R A 1992 AIAA 17th Aerospace Ground Testing Conference Nashville, TN, U. S. A, July, 1992 p3998

    [11]

    Landrum D B, Hayami R A 1994 AIAA 25th Plasmadynamics and Lasers Conference, Colorado Springs, CO, U. S. A, June, 1994 p2598

    [12]

    Keidar M, Kim M, Boyd I D 2008 J. Spacecraft Rockets 45 445Google Scholar

    [13]

    Savino R, Paterna D, De Stefano Fumo M, D’Elia M 2010 Open Aerospace Eng. J. 3 76Google Scholar

    [14]

    Chadwick K M, Boyer D W, Andre S N 1996 ADA317594 (New York: Calspan Corp Buffalo

    [15]

    Geist T, Wursching E, Hartfuss H J 1997 Rev. Sci. Instrum. 68 1162Google Scholar

    [16]

    Yoshikawa M, Negishi S, Shima Y, Hojo H, Mase A, Kogi Y, Imai T 2010 Rev. Sci. Instrum. 81 10D514Google Scholar

    [17]

    Kawamori E, Lin Y H, Mase A, Nishida Y, Cheng C Z 2014 Rev. Sci. Instrum. 85 023507Google Scholar

    [18]

    Shi P W, Shi Z B, Chen W, Zhong W L, Yang Z C, Jiang M, Zhang B Y, Li Y G, Yu L M, Liu Z T, Ding X T 2016 Plasma Sci. Technol. 18 708Google Scholar

    [19]

    任冬梅 2005 硕士学位论文(成都: 电子科技大学)

    Ren D M 2005 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [20]

    朱佩涛 2006 硕士学位论文(成都: 电子科技大学)

    Zhu P T 2006 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [21]

    谢楷 2014 博士学位论文(西安: 西安电子科技大学)

    Xie K 2014 Ph. D. Dissertation (Xi’ an: XiDian University

    [22]

    曾彬 2021 硕士学位论文(成都: 电子科技大学)

    Zeng B 2021 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [23]

    吴明兴, 田得阳, 唐璞, 田径, 何子远, 马平 2022 70 115202Google Scholar

    Wu M X, Tian D Y, Tang P, Tian J, He Z Y, Ma P 2022 Acta Phys. Sin. 70 115202Google Scholar

  • 图 1  Abel变换示意图

    Fig. 1.  Diagram of Abel transform.

    图 2  七通道微波干涉仪测量示意图

    Fig. 2.  Schematic of seven-channel microwave interferometer measurement.

    图 3  弹道靶模型尾迹离子体分层模型

    Fig. 3.  The multi-layered model of plasma wake in ballistic range.

    图 4  七通道微波干涉法测试分区域介质板仿真结构图

    Fig. 4.  Simulation of multi-channel microwave interferometry with non-uniform dielectric plate.

    图 5  近场扫描与开口波导天线接收相位结果反推分区域介质板的介电常数对比图

    Fig. 5.  Comparison of dielectric constant distributions of the dielectric plate achieved with near-field scanning and open waveguide antenna.

    图 6  分层介质板平面波激励近场扫描仿真结构示意图

    Fig. 6.  Schematic of plane wave incident on uniform multi-layered dielectric plate.

    图 7  开口波导天线接收相位结果反推分区域介质板的介电常数与理论值对比图

    Fig. 7.  Comparison between the theoretical dielectric constant and that deduced from the phase information results received by open waveguide antennas.

    图 8  分层分区域介质平板仿真结构示意图

    Fig. 8.  Simulation model of non-uniform multi-layered dielectric plate.

    图 9  分层分区域介质板介电常数仿真结果与理论值对比图

    Fig. 9.  Comparison between simulation and theoretical results of the dielectric constant of non-uniform multi-layered dielectric plate.

    图 10  七通道Ka波段微波干涉仪测量系统工作原理图

    Fig. 10.  Schematic of the seven-channel Ka-band microwave interferometer measurement system.

    图 11  宽度100 mm的空间分布接收天线阵示意图(尺寸单位: mm)

    Fig. 11.  Diagram of the receiving antenna array with a width of 100 mm (The dimensions in the figure are in mm).

    图 12  Al2O3球模型尾迹处电子密度径向二维分布 (a) ϕ15 mm Al2O3球, P = 20 kPa, V = 4.80 km/s, x = 10ϕ; (b) ϕ15 mm Al2O3球, P = 20 kPa, V = 4.80 km/s, x = 50ϕ; (c) ϕ15 mm Al2O3球, P = 20 kPa, V = 4.80 km/s, x = 100ϕ

    Fig. 12.  Two-dimensional radial electron density distribution of plasma wake generated by spherical Al2O3 models: (a) ϕ15 mm Al2O3 ball, P = 20 kPa, V = 4.80 km/s, x = 10ϕ; (b) ϕ15 mm Al2O3 ball, P = 20 kPa, V = 4.80 km/s, x = 50ϕ; (c) ϕ15 mm Al2O3 ball, P = 20 kPa, V = 4.80 km/s, x = 100ϕ.

    图 13  Al2O3球超高速等离子体流场驻点线上各化学反应的组元生成率曲线图 (a) $ {{\text{O}}_{2}} + {{\text{M}}_{1}} \Leftrightarrow {\text{2O + }}{{\text{M}}_{1}} $; (b) $ \text{N}_2+\text{M}_2\Leftrightarrow\text{2N + }\text{M}_2 $; (c) $ {\text{NO}} + {{\text{M}}_{3}} \Leftrightarrow {\text{N + O + }}{{\text{M}}_{3}} $; (d) $ {\text{NO}} + {\text{O}} \Leftrightarrow {{\text{O}}_{2}}{\text{ + N}} $; (e) $ {{\text{N}}_{2}} + {\text{O}} \Leftrightarrow {\text{NO + N}} $; (f) $ {\text{N}} + {\text{O}} \Leftrightarrow {\text{N}}{{\text{O}}^{+}}{+}{{\text{e}}^{{ - }}} $

    Fig. 13.  Reaction rates vs. distance along wall from stagnation point of plasma flow field of supersonic spherical Al2O3 model: (a) $ \text{O}_2+\text{M}_1\Leftrightarrow\text{2O + }\text{M}_1 $; (b) $ \text{N}_2+\text{M}_2\Leftrightarrow\text{2N + }\text{M}_2 $; (c) $ {\text{NO}} + {{\text{M}}_{3}} \Leftrightarrow {\text{N + O + }}{{\text{M}}_{3}} $; (d) $ {\text{NO}} + {\text{O}} \Leftrightarrow {{\text{O}}_{2}}{\text{ + N}} $; (e) $ {{\text{N}}_{2}} + {\text{O}} \Leftrightarrow {\text{NO + N}} $; (f) $ {\text{N}} + {\text{O}} \Leftrightarrow {\text{N}}{{\text{O}}^{+}}{+}{{\text{e}}^{{ - }}} $.

    图 14  方形等离子体分层模型

    Fig. 14.  Model of layered square plasma.

    图 15  激波管等离子体电子密度不同反演方法对比图 (a) P = 30 Pa, V = 5.00 km/s; (b) P = 150 Pa, V = 5.55 km/s

    Fig. 15.  Comparison of plasma electron density in shock tube achieved with various methods: (a) P = 30 Pa, V = 5.00 km/s; (b) P = 150 Pa, V = 5.55 km/s.

    图 16  激波管等离子体不同分层模型反演结果对比 (a) P = 30 Pa, V = 5.00 km/s; (b) P = 150 Pa, V = 5.55 km/s

    Fig. 16.  Comparison of inversion results of shock tube plasma achieved with various models: (a) P = 30 Pa, V = 5.00 km/s; (b) P = 150 Pa, V = 5.55 km/s.

    表 1  PMMA实测测试结果

    Table 1.  PMMA test results.

    工作频率/
    GHz
    $ {\varepsilon _{\text{r}}} $$ \Delta {\varepsilon _{\text{r}}} $/%
    开口波导法微波干涉仪法
    8.02.732.843.87
    8.52.872.763.99
    9.02.602.714.06
    9.52.572.653.01
    10.02.582.621.53
    10.52.582.590.39
    11.02.522.561.56
    11.52.452.522.78
    12.02.472.490.80
    下载: 导出CSV

    表 2  在工作频率为35 GHz下理想等离子体层电子密度测试范围

    Table 2.  Electron density test range of plasma at 35 GHz.

    碰撞频率/
    GHz
    等离子体
    厚度/cm
    等离子体密度
    下限/(1010 cm–3)
    等离子体密度
    上限/(1010 cm–3)
    5 1 306.2 1120.1
    2 162.2 612.1
    8 42.27 163.5
    20 16.98 64.5
    40 8.511 32.4
    60 5.072 22.1
    10 1 171.4 1121.3
    2 88.31 653.5
    8 22.49 173.1
    20 9.036 70.0
    40 4.529 35.3
    60 3.02 23.5
    下载: 导出CSV
    Baidu
  • [1]

    于哲峰, 孙良奎, 马平, 杨益兼, 张志成, 黄洁 2017 红外 38 39Google Scholar

    Yu Z F, Sun L K, Ma P, Yang Y J, Zhang Z C, Huang J 2017 Infrared 38 39Google Scholar

    [2]

    John W, Marini M 1967 NASA TM X-55824 pp2-8

    [3]

    韦笑, 彭世鏐, 殷红成, 印国泰 2011 系统工程与电子技术 33 506Google Scholar

    Wei X, Peng S L, Yin H C, Yin G T 2011 Syst. Eng. Electron. 33 506Google Scholar

    [4]

    杨利霞, 沈丹华, 施卫东 2013 62 104101Google Scholar

    Yang L X, Shen D H, Shi W D 2013 Acta Phys. Sin. 62 104101Google Scholar

    [5]

    黄勇, 陈宗胜, 徐记伟 2008 舰船电子对抗 31 18Google Scholar

    Huang Y, Chen Z S, Xu J W 2008 SEC 31 18Google Scholar

    [6]

    吴建明, 高本庆 1997 电波科学学报 12 26

    Wu J, Gao B Q 1997 Chin. J. Radio Sci. 12 26

    [7]

    朱方, 吕琼之 2008 现代雷达 30 14Google Scholar

    Zhu F, Lv Q Z 2008 Mod. Radar 30 14Google Scholar

    [8]

    周超, 张小宽, 张晨新 2014 现代雷达 36 83Google Scholar

    Zhou C, Zhang X K, Z hang C X 2014 Mod. Radar 36 83Google Scholar

    [9]

    李勇 2014 硕士学位论文(南京: 南京邮电大学)

    Li Y 2014 M. S. Thesis (Nanjing: Nan-jing University of Posts and Telecommunications

    [10]

    Hayami R A 1992 AIAA 17th Aerospace Ground Testing Conference Nashville, TN, U. S. A, July, 1992 p3998

    [11]

    Landrum D B, Hayami R A 1994 AIAA 25th Plasmadynamics and Lasers Conference, Colorado Springs, CO, U. S. A, June, 1994 p2598

    [12]

    Keidar M, Kim M, Boyd I D 2008 J. Spacecraft Rockets 45 445Google Scholar

    [13]

    Savino R, Paterna D, De Stefano Fumo M, D’Elia M 2010 Open Aerospace Eng. J. 3 76Google Scholar

    [14]

    Chadwick K M, Boyer D W, Andre S N 1996 ADA317594 (New York: Calspan Corp Buffalo

    [15]

    Geist T, Wursching E, Hartfuss H J 1997 Rev. Sci. Instrum. 68 1162Google Scholar

    [16]

    Yoshikawa M, Negishi S, Shima Y, Hojo H, Mase A, Kogi Y, Imai T 2010 Rev. Sci. Instrum. 81 10D514Google Scholar

    [17]

    Kawamori E, Lin Y H, Mase A, Nishida Y, Cheng C Z 2014 Rev. Sci. Instrum. 85 023507Google Scholar

    [18]

    Shi P W, Shi Z B, Chen W, Zhong W L, Yang Z C, Jiang M, Zhang B Y, Li Y G, Yu L M, Liu Z T, Ding X T 2016 Plasma Sci. Technol. 18 708Google Scholar

    [19]

    任冬梅 2005 硕士学位论文(成都: 电子科技大学)

    Ren D M 2005 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [20]

    朱佩涛 2006 硕士学位论文(成都: 电子科技大学)

    Zhu P T 2006 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [21]

    谢楷 2014 博士学位论文(西安: 西安电子科技大学)

    Xie K 2014 Ph. D. Dissertation (Xi’ an: XiDian University

    [22]

    曾彬 2021 硕士学位论文(成都: 电子科技大学)

    Zeng B 2021 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [23]

    吴明兴, 田得阳, 唐璞, 田径, 何子远, 马平 2022 70 115202Google Scholar

    Wu M X, Tian D Y, Tang P, Tian J, He Z Y, Ma P 2022 Acta Phys. Sin. 70 115202Google Scholar

  • [1] 颜劭祺, 高继昆, 陈越, 马尧, 朱晓东. 电子束透射氮化硅薄膜窗产生低密度等离子体.  , 2024, 73(14): 144102. doi: 10.7498/aps.73.20240302
    [2] 李向富, 朱晓禄, 蒋刚. 等离子体对电子间相互作用的屏蔽效应研究.  , 2023, 72(7): 073102. doi: 10.7498/aps.72.20222339
    [3] 刘祥群, 刘宇, 凌艺铭, 雷久侯, 曹金祥, 李瑾, 钟育民, 谌明, 李艳华. 等离子体风洞中释放二氧化碳降低电子密度.  , 2022, 71(14): 145202. doi: 10.7498/aps.71.20212353
    [4] 冯博文, 王若愚, 马雨彭雪, 钟晓霞. 常压针-板放电等离子体密度演化.  , 2021, 70(9): 095201. doi: 10.7498/aps.70.20201790
    [5] 邹秀, 刘惠平, 张小楠, 邱明辉. 具有非广延分布电子的碰撞等离子体磁鞘的结构.  , 2021, 70(1): 015201. doi: 10.7498/aps.70.20200794
    [6] 赵晓云, 张丙开, 王春晓, 唐义甲. 电子的非广延分布对等离子体鞘层中二次电子发射的影响.  , 2019, 68(18): 185204. doi: 10.7498/aps.68.20190225
    [7] 李志刚, 程立, 袁忠才, 汪家春, 时家明. 高功率微波作用下等离子体中的雪崩效应研究.  , 2017, 66(19): 195202. doi: 10.7498/aps.66.195202
    [8] 杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星. 飞秒激光成丝诱导Cu等离子体的温度和电子密度.  , 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [9] 王浩若, 张冲, 张宏超, 沈中华, 倪晓武, 陆健. 超短脉冲激光与微小水滴相互作用中电子密度和光场的时空分布.  , 2017, 66(12): 127801. doi: 10.7498/aps.66.127801
    [10] 张鹏, 洪延姬, 丁小雨, 沈双晏, 冯喜平. 等离子体对含硼两相流扩散燃烧特性的影响.  , 2015, 64(20): 205203. doi: 10.7498/aps.64.205203
    [11] 袁忠才, 时家明. 高功率微波与等离子体相互作用理论和数值研究.  , 2014, 63(9): 095202. doi: 10.7498/aps.63.095202
    [12] 冯璟华, 蒙世坚, 甫跃成, 周林, 徐荣昆, 张建华, 李林波, 章法强. 含氢电极真空弧放电等离子体时空分布特性研究.  , 2014, 63(14): 145205. doi: 10.7498/aps.63.145205
    [13] 蔡明辉, 吴逢时, 李宏伟, 韩建伟. 空间微小碎片超高速撞击诱发的等离子体特性研究.  , 2014, 63(1): 019401. doi: 10.7498/aps.63.019401
    [14] 邹帅, 唐中华, 吉亮亮, 苏晓东, 辛煜. 悬浮型微波共振探针在电负性容性耦合等离子体中电子密度的测量.  , 2012, 61(7): 075204. doi: 10.7498/aps.61.075204
    [15] 董丽芳, 刘为远, 杨玉杰, 王帅, 嵇亚飞. 大气压等离子体炬电子密度的光谱诊断.  , 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [16] 王巍, 蒋刚. 基于双激发态对稠密等离子体中双电子复合速率系数的研究.  , 2010, 59(11): 7815-7823. doi: 10.7498/aps.59.7815
    [17] 李宏伟, 韩建伟, 黄建国, 蔡明辉, 李小银, 高著秀. 利用超高速撞击产生的等离子体测量微粒速度的方法研究.  , 2010, 59(2): 1385-1390. doi: 10.7498/aps.59.1385
    [18] 何 峰, 余 玮, 陆培祥. 飞秒强激光作用下线性等离子体层中光场和电子密度的自洽分布.  , 2003, 52(8): 1965-1969. doi: 10.7498/aps.52.1965
    [19] 傅喜泉, 刘承宜, 郭弘. 等离子体中X射线激光传输与电子密度诊断的理论及数值比较.  , 2002, 51(6): 1326-1331. doi: 10.7498/aps.51.1326
    [20] 何斌, 常铁强, 张家泰, 许林宝. 超强激光场等离子体中电子纵向运动的研究.  , 2001, 50(10): 1939-1945. doi: 10.7498/aps.50.1939
计量
  • 文章访问数:  646
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-09
  • 修回日期:  2024-07-07
  • 上网日期:  2024-08-02
  • 刊出日期:  2024-09-05

/

返回文章
返回
Baidu
map