搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黏弹性介质包裹的液体腔内球状泡群耦合振动模型

左馨怡 雷照康 武耀蓉 王成会

引用本文:
Citation:

黏弹性介质包裹的液体腔内球状泡群耦合振动模型

左馨怡, 雷照康, 武耀蓉, 王成会

A model of coupled oscillation of bubble cluster in liquid cavity wrapped by viscoelastic medium

Zuo Xin-Yi, Lei Zhao-Kang, Wu Yao-Rong, Wang Cheng-Hui
PDF
HTML
导出引用
  • 高强度超声可激发生物组织空化, 软组织常被当作黏弹性介质, 因此, 黏弹性介质中气泡动力学行为研究可为超声生物治疗提供理论支持. 为探索组织液内多气泡动力学影响, 构建了球形液体腔内的球状泡团模型, 考虑了液体腔外黏弹性介质的动力学效应, 得到了球状泡群内气泡耦合振动方程, 并基于此分析了气泡的振动行为. 结果表明, 腔体以及泡群约束虽抑制了气泡振动, 但在一定程度上还可以增强气泡的非线性振动特性. 约束环境下气泡的非球形振动稳定性主要受驱动声波压力幅值和频率、气泡初始半径以及气泡数密度影响, 而腔体半径的影响随驱动压力的增加而增强; 存在最小不稳定驱动声压阈值, 不同初始半径的气泡不稳定振动阈值压力不同且不稳定分布区主要分布在小于4 μm的范围内; 驱动频率增大, 气泡振动不稳定区的声压阈值也随之增大, 且不稳定区域有减小的趋势; 随着气泡数密度的增加, 气泡不稳定区域逐渐向无规则的斑图状分布, 极易受到扰动发生不稳定振动而崩溃. 高频声波激励下平衡半径大于4 μm范围内气泡的惯性空化阈值受频率和气泡数密度的影响显著.
    Considering the interactions between bubbles in a multi-bubble system in a liquid micro-cavity, a spherical bubble cluster in a liquid cavity is modeled in order to describe the dynamical effect of the viscoelastic medium outside the liquid cavity on the oscillation of bubbles, and the coupled equations of bubbles are obtained. Subsequently, the acoustic response characteristics of bubbles are investigated by analyzing the radial oscillation, the stability of the non-spherical shape of bubbles and the threshold of inertial cavitation. The results show that the confinement of the cavity and the bubble cluster facilitates the suppression of bubble oscillation, however, it might enhance the nonlinear properties of bubbles to a certain extent. From the acoustic response curve at 1 MHz, it is found that the main resonance peaks shift leftward with the increase of the bubble number, which means a minor resonant radius can be obtained. The nonlinear stability of bubbles in a confined environment is mainly determined by acoustic pressure amplitude and frequency, the initial bubble radius, and bubble number density, while the effect of the cavity radius is enhanced with the increase of the driving pressure. There is a minimum unstable driving acoustic pressure threshold, depending on the initial bubble radius, and the unstable regions are mainly located in a range of less than 4 μm. With the increase in bubble number density, the strip-type stable region scattered of the unstable region in the map is gradually transformed into a random patch-like distribution, which indicates that the bubble oscillation under high acoustic pressure is more sensitive to the parameters, and it is very susceptible to interference, produces unstable oscillation and then collapses. When the bubble equilibrium radius is in a range greater than 4 μm, the influences of frequency and bubble number density on the inertial thresholds are particularly significant.
      通信作者: 王成会, wangld001@snnu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 12374441, 11974232, 12074238) 资助的课题.
      Corresponding author: Wang Cheng-Hui, wangld001@snnu.edu.cn
    • Funds: Project supported by the the National Natural Science Foundation of China (Grant Nos. 12374441, 11974232, 12074238).
    [1]

    Kooiman K, Roovers S, Langeveld S A G, Kleven R T, Dewitte H, O'Reilly M A, Escoffre J M, Bouakaz A, Verweij M D, Hynynen K, Lentacker I, Stride E, Holland C K 2020 Ultrasound Med. Biol. 46 1296Google Scholar

    [2]

    Xi F, Feng Y, Chen Q, Chen L, Liu J 2022 Front. Oncol. 12 852454Google Scholar

    [3]

    Ellegala D B, Leong-Poi H, Carpenter J E, Klibanov A L, Kaul S, Shaffrey M E, Sklenar J, Lindner J R 2003 Circulation 108 336Google Scholar

    [4]

    Lanza G M, Abendschein D R, Hall C S, Scott M J, Scherrer D E, Houseman A, Miller J G, Wickline S A 2000 J. Am. Soc. Echocardiogr. 13 608Google Scholar

    [5]

    Lyons B, Balkaran J P R, Dunn-Lawless D, Lucian V, Keller S B, O'Reilly C S, Hu L A, Rubasingham J, Nair M, Carlisle R, Stride E, Gray M, Coussios C, Lu Y, Chen Z J 2023 Molecules 28 7733Google Scholar

    [6]

    Wischhusen J, Padilla F 2019 Irbm 40 10Google Scholar

    [7]

    Guzman H R, McNamara A J, Nguyen D X, Prausnitz M R 2003 Ultrasound Med. Biol. 29 1211Google Scholar

    [8]

    Liu Y, Yang H, Sakanishi A 2006 Biotechnol. Adv. 24 1Google Scholar

    [9]

    Unnikrishnan S, Klibanov A L 2012 Am. J. Roentgenol. 199 292Google Scholar

    [10]

    Villanueva F S, Jankowski R J, Klibanov S, Pina M L, Alber S M, Watkins S C, Brandenburger G H, Wagner W R 1998 Circulation 98 1Google Scholar

    [11]

    Schenk H J, Steppe K, Jansen S 2015 Trends Plant Sci. 20 199Google Scholar

    [12]

    Tanasawa I, Yang W J 1970 J. Appl. Phys. 41 4526Google Scholar

    [13]

    Wang Q X 2017 Phys. Fluids 29 072101Google Scholar

    [14]

    Vincent O, Marmottant P, Gonzalez-Avila S R, Ando K, Ohl C D 2014 Soft Matter 10 1455Google Scholar

    [15]

    Church C C, Yang X M 2006 AIP Conf. Proc. 838 217Google Scholar

    [16]

    Leonov K, Akhatov I 2021 Phys. Rev. E 104 015105Google Scholar

    [17]

    张陶然, 莫润阳, 胡静, 陈时, 王成会, 郭建中 2021 70 124301Google Scholar

    Zhang T R, Mo R Y, Hu J, Chen S, Wang C H, Guo J Z 2021 Acta Phys. Sin. 70 124301Google Scholar

    [18]

    张先梅, 王成会, 郭建中, 莫润阳, 胡静, 陈时 2021 70 214305Google Scholar

    Zhang X M, Wang C H, Guo J Z, Mo R Y, Hu J, Chen S 2021 Acta Phys. Sin. 70 214305Google Scholar

    [19]

    Zhang X M, Li F, Wang C H, Guo J Z, Mo R Y, Hu J, Chen S, He J X, Liu H H 2022 Ultrason. Sonochem. 84 105957Google Scholar

    [20]

    Gaudron R, Murakami K, Johnsen E 2020 J. Mech. Phys. Solids 143 104047Google Scholar

    [21]

    Zilonova E M, Solovchuk M, Sheu T W H 2019 Ultrason. Sonochem. 53 11Google Scholar

    [22]

    Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A 2008 Phys. Rev. E 77 016609Google Scholar

    [23]

    Wang X, Chen W, Zhou M, Zhang Z, Zhang L 2022 Ultrason. Sonochem. 84 105952Google Scholar

    [24]

    An Y 2011 Phys. Rev. E 83 066313Google Scholar

    [25]

    Zhang W, An Y 2013 Phys. Rev. E 87 053023Google Scholar

    [26]

    王成会, 莫润阳, 胡静, 陈时 2015 64 234301Google Scholar

    Wang C H, Mo R Y, Hu J, Chen S 2015 Acta Phys. Sin. 64 234301Google Scholar

    [27]

    Xu L, Yao X R, Shen Y 2024 Chin. Phys. B 33 044702Google Scholar

    [28]

    Liu R, Huang C Y, Wu Y R, Hu J, Mo R Y, Wang C H 2024 Acta Phys. Sin. 73 084303 [刘睿, 黄晨阳, 武耀蓉, 胡静, 莫润阳, 王成会 2024 73 084303]Google Scholar

    Liu R, Huang C Y, Wu Y R, Hu J, Mo R Y, Wang C H 2024 Acta Phys. Sin. 73 084303Google Scholar

    [29]

    李凡, 张先梅, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳 2022 71 084303Google Scholar

    Li F, Zhang X M, Tian H, Hu J, Chen S, Wang C H, Guo J Z, Mo R Y 2022 Acta Phys. Sin. 71 084303Google Scholar

    [30]

    Vincent O, Marmottant P, Quinto-Su P A, Ohl C D 2012 Phys. Rev. Lett. 108 184502Google Scholar

    [31]

    Ma Y, Zhang G, Ma T 2022 Ultrason. Sonochem. 84 105953Google Scholar

    [32]

    Weninger K R, Camara C G, Putterman S J 2001 Phys. Rev. E 63 016310Google Scholar

  • 图 1  黏弹性介质包裹的液体腔中球状泡群

    Fig. 1.  Bubble cluster in a liquid confined in a viscoelastic medium.

    图 2  不同模型下气泡振荡对比图 (a)本文模型(model 1)与球状泡群内气泡的耦合振动模型(model 2)以及单泡模型(single bubble)对比; (b)本文模型与弹性介质包裹的液体腔内单气泡空化模型(model 3)对比

    Fig. 2.  Comparison of different models of bubble oscillations: (a) The model in this paper (model 1) is compared with the coupled oscillation model of bubble cluster in the infinite liquid (model 2) and the single bubble model (single bubble); (b) the model in this paper (model 1) is compared with the model of a single bubble in a liquid cavity enclosed by elastic medium (model 3).

    图 3  气泡振动特性 (a) 气泡振动分岔图; (b) 不同介质剪切模量下气泡径向振荡; (c) 气泡数量对气泡最大半径的影响; (d) 初始气泡半径对气泡最大半径的影响

    Fig. 3.  Bubble oscillations characteristics: (a) Bubble oscillations bifurcation diagram; (b) radial oscillations of bubble under different medium shear moduli; (c) effect of the number of bubbles on maximum bubble radius; (d) effect of initial bubble radius on maximum bubble radius.

    图 4  不同参数平面上气泡非球形系数与气泡半径比值$ {a_n}/{r_{{\text{b}}0}} $ (a) $ {r_{{\text{b0}}}}{\text{-}}{p_{\text{a}}} $参数平面; (b) $ N{\text{-}}{p_{\text{a}}} $参数平面; (c) $ {R_{{\text{c}}0}}{\text{-}}{p_{\text{a}}} $参数平面; (d) $ f{\text{-}}{p_{\text{a}}} $参数平面; (e) $ {r_{{\text{c0}}}}{\text{-}}{p_{\text{a}}} $参数平面; (f) $ G{\text{-}}{p_{\text{a}}} $参数平面(黑色, 稳定; 白色, 不稳定)

    Fig. 4.  Ratio of bubble nonsphericity coefficient to bubble radius in different parameter planes: (a) $ {r_{{\text{b0}}}}{\text{-}}{p_{\text{a}}} $ parameter plane; (b) $ N{\text{-}}{p_{\text{a}}} $ parameter plane; (c) $ {R_{{\text{c0}}}}{\text{-}}{p_{\text{a}}} $ parameter plane; (d) $ f{\text{-}}{p_{\text{a}}} $ parameter plane; (e) $ {r_{{\text{c0}}}}{\text{-}}{p_{\text{a}}} $ parameter plane; (f) $ G{\text{-}}{p_{\text{a}}} $ parameter plane (black, stable; white, unstable).

    图 5  参数对气泡惯性空化阈值的影响 (a) 介质弹性; (b) 驱动频率; (c) 初始液体腔半径; (d) 气泡数量

    Fig. 5.  Influence of different parameters on the threshold of inertial cavitation of bubbles: (a) Shear modulus of medium; (b) driving frequency; (c) initial liquid cavity radius; (d) bubble number.

    Baidu
  • [1]

    Kooiman K, Roovers S, Langeveld S A G, Kleven R T, Dewitte H, O'Reilly M A, Escoffre J M, Bouakaz A, Verweij M D, Hynynen K, Lentacker I, Stride E, Holland C K 2020 Ultrasound Med. Biol. 46 1296Google Scholar

    [2]

    Xi F, Feng Y, Chen Q, Chen L, Liu J 2022 Front. Oncol. 12 852454Google Scholar

    [3]

    Ellegala D B, Leong-Poi H, Carpenter J E, Klibanov A L, Kaul S, Shaffrey M E, Sklenar J, Lindner J R 2003 Circulation 108 336Google Scholar

    [4]

    Lanza G M, Abendschein D R, Hall C S, Scott M J, Scherrer D E, Houseman A, Miller J G, Wickline S A 2000 J. Am. Soc. Echocardiogr. 13 608Google Scholar

    [5]

    Lyons B, Balkaran J P R, Dunn-Lawless D, Lucian V, Keller S B, O'Reilly C S, Hu L A, Rubasingham J, Nair M, Carlisle R, Stride E, Gray M, Coussios C, Lu Y, Chen Z J 2023 Molecules 28 7733Google Scholar

    [6]

    Wischhusen J, Padilla F 2019 Irbm 40 10Google Scholar

    [7]

    Guzman H R, McNamara A J, Nguyen D X, Prausnitz M R 2003 Ultrasound Med. Biol. 29 1211Google Scholar

    [8]

    Liu Y, Yang H, Sakanishi A 2006 Biotechnol. Adv. 24 1Google Scholar

    [9]

    Unnikrishnan S, Klibanov A L 2012 Am. J. Roentgenol. 199 292Google Scholar

    [10]

    Villanueva F S, Jankowski R J, Klibanov S, Pina M L, Alber S M, Watkins S C, Brandenburger G H, Wagner W R 1998 Circulation 98 1Google Scholar

    [11]

    Schenk H J, Steppe K, Jansen S 2015 Trends Plant Sci. 20 199Google Scholar

    [12]

    Tanasawa I, Yang W J 1970 J. Appl. Phys. 41 4526Google Scholar

    [13]

    Wang Q X 2017 Phys. Fluids 29 072101Google Scholar

    [14]

    Vincent O, Marmottant P, Gonzalez-Avila S R, Ando K, Ohl C D 2014 Soft Matter 10 1455Google Scholar

    [15]

    Church C C, Yang X M 2006 AIP Conf. Proc. 838 217Google Scholar

    [16]

    Leonov K, Akhatov I 2021 Phys. Rev. E 104 015105Google Scholar

    [17]

    张陶然, 莫润阳, 胡静, 陈时, 王成会, 郭建中 2021 70 124301Google Scholar

    Zhang T R, Mo R Y, Hu J, Chen S, Wang C H, Guo J Z 2021 Acta Phys. Sin. 70 124301Google Scholar

    [18]

    张先梅, 王成会, 郭建中, 莫润阳, 胡静, 陈时 2021 70 214305Google Scholar

    Zhang X M, Wang C H, Guo J Z, Mo R Y, Hu J, Chen S 2021 Acta Phys. Sin. 70 214305Google Scholar

    [19]

    Zhang X M, Li F, Wang C H, Guo J Z, Mo R Y, Hu J, Chen S, He J X, Liu H H 2022 Ultrason. Sonochem. 84 105957Google Scholar

    [20]

    Gaudron R, Murakami K, Johnsen E 2020 J. Mech. Phys. Solids 143 104047Google Scholar

    [21]

    Zilonova E M, Solovchuk M, Sheu T W H 2019 Ultrason. Sonochem. 53 11Google Scholar

    [22]

    Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A 2008 Phys. Rev. E 77 016609Google Scholar

    [23]

    Wang X, Chen W, Zhou M, Zhang Z, Zhang L 2022 Ultrason. Sonochem. 84 105952Google Scholar

    [24]

    An Y 2011 Phys. Rev. E 83 066313Google Scholar

    [25]

    Zhang W, An Y 2013 Phys. Rev. E 87 053023Google Scholar

    [26]

    王成会, 莫润阳, 胡静, 陈时 2015 64 234301Google Scholar

    Wang C H, Mo R Y, Hu J, Chen S 2015 Acta Phys. Sin. 64 234301Google Scholar

    [27]

    Xu L, Yao X R, Shen Y 2024 Chin. Phys. B 33 044702Google Scholar

    [28]

    Liu R, Huang C Y, Wu Y R, Hu J, Mo R Y, Wang C H 2024 Acta Phys. Sin. 73 084303 [刘睿, 黄晨阳, 武耀蓉, 胡静, 莫润阳, 王成会 2024 73 084303]Google Scholar

    Liu R, Huang C Y, Wu Y R, Hu J, Mo R Y, Wang C H 2024 Acta Phys. Sin. 73 084303Google Scholar

    [29]

    李凡, 张先梅, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳 2022 71 084303Google Scholar

    Li F, Zhang X M, Tian H, Hu J, Chen S, Wang C H, Guo J Z, Mo R Y 2022 Acta Phys. Sin. 71 084303Google Scholar

    [30]

    Vincent O, Marmottant P, Quinto-Su P A, Ohl C D 2012 Phys. Rev. Lett. 108 184502Google Scholar

    [31]

    Ma Y, Zhang G, Ma T 2022 Ultrason. Sonochem. 84 105953Google Scholar

    [32]

    Weninger K R, Camara C G, Putterman S J 2001 Phys. Rev. E 63 016310Google Scholar

  • [1] 刘睿, 黄晨阳, 武耀蓉, 胡静, 莫润阳, 王成会. 声空化场中球状泡团的结构稳定性分析.  , 2024, 73(8): 084303. doi: 10.7498/aps.73.20232008
    [2] 林基艳, 孙姣夏, 林书玉. 大尺寸三维超声振动系统的智能优化设计.  , 2024, 73(8): 084304. doi: 10.7498/aps.73.20240006
    [3] 黄晨阳, 李凡, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳. 空化场中大气泡对空化泡振动的抑制效应分析.  , 2023, 72(6): 064302. doi: 10.7498/aps.72.20221955
    [4] 许龙, 汪尧. 双泡耦合声空化动力学过程模拟.  , 2023, 72(2): 024303. doi: 10.7498/aps.72.20221571
    [5] 李凡, 张先梅, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳. 液体薄层中环链状空化泡云结构稳定性分析.  , 2022, 71(8): 084303. doi: 10.7498/aps.71.20212257
    [6] 郑雅欣, 那仁满都拉. 可压缩液体中气泡的声空化特性.  , 2022, 71(1): 014301. doi: 10.7498/aps.71.20211266
    [7] 郑雅欣, 那仁满都拉. 可压缩液体中气泡的声空化特性.  , 2021, (): . doi: 10.7498/aps.70.20211266
    [8] 徐珂, 许龙, 周光平. 考虑水蒸气蒸发和冷凝的球状泡群中泡的动力学特性.  , 2021, 70(19): 194301. doi: 10.7498/aps.70.20210045
    [9] 张陶然, 莫润阳, 胡静, 陈时, 王成会, 郭建中. 黏弹介质包裹的液体腔中气泡的动力学分析.  , 2021, 70(12): 124301. doi: 10.7498/aps.70.20201876
    [10] 张陶然, 莫润阳, 胡静, 陈时, 王成会, 郭建中. 弹性介质包围的球形液体腔中气泡和粒子的相互作用.  , 2020, 69(23): 234301. doi: 10.7498/aps.69.20200764
    [11] 清河美, 那仁满都拉. 不同类型气泡组成的混合泡群声空化特性.  , 2020, 69(18): 184301. doi: 10.7498/aps.69.20200381
    [12] 张鹏利, 林书玉, 朱华泽, 张涛. 声场中球形空化云中气泡的耦合谐振.  , 2019, 68(13): 134301. doi: 10.7498/aps.68.20190360
    [13] 清河美, 那仁满都拉. 空化多泡中大气泡对小气泡空化效应的影响.  , 2019, 68(23): 234302. doi: 10.7498/aps.68.20191198
    [14] 莫润阳, 王成会, 胡静, 陈时. 双气泡振子系统的非线性声响应特性分析.  , 2019, 68(14): 144302. doi: 10.7498/aps.68.20190408
    [15] 王德鑫, 那仁满都拉. 耦合双泡声空化特性的理论研究.  , 2018, 67(3): 037802. doi: 10.7498/aps.67.20171805
    [16] 赵甜甜, 林书玉, 段祎林. 类声子晶体结构对超声塑料焊接工具横向振动的抑制.  , 2018, 67(22): 224207. doi: 10.7498/aps.67.20181150
    [17] 王成会, 莫润阳, 胡静. 低频超声空化场中柱状泡群内气泡的声响应.  , 2016, 65(14): 144301. doi: 10.7498/aps.65.144301
    [18] 王成会, 莫润阳, 胡静, 陈时. 球状泡群内气泡的耦合振动.  , 2015, 64(23): 234301. doi: 10.7498/aps.64.234301
    [19] 王勇, 林书玉, 莫润阳, 张小丽. 含气泡液体中气泡振动的研究.  , 2013, 62(13): 134304. doi: 10.7498/aps.62.134304
    [20] 卢义刚, 吴雄慧. 双泡超声空化计算分析.  , 2011, 60(4): 046202. doi: 10.7498/aps.60.046202
计量
  • 文章访问数:  1218
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-01
  • 修回日期:  2024-06-13
  • 上网日期:  2024-07-01
  • 刊出日期:  2024-08-05

/

返回文章
返回
Baidu
map